1) generalized symmetric and self-orthogonal similar matrix
广义对称自正交相似矩阵
1.
J is a anti-symmetric and orthogonal matrix, A ∈R2k ×2k, if JAJT =AT,AT =A,then A is generalized symmetric and self-orthogonal similar matrix.
J是反对称正交矩阵,A∈R2k×2k,如果JAJT=AT,AT=A,则称A为广义对称自正交相似矩阵,全体n阶广义对称自正交相似矩阵的集合记为GSRn×n,n=2k。
2) symmetric and self-orthogonally similar matrix
对称自正交相似矩阵
1.
Upon using the denotative theorem of symmetric and self-orthogonally similar matrix, the following problems are discussed:ProblemⅠ:Given X、B∈Rn×m, find A∈Jn×n, such that‖AX-B‖=min.
通过给出对称自正交相似矩阵的表示定理,研究了如下对称自正交相似矩阵反问题:问题Ⅰ:己知X、B∈R~(n×m),J~(n×n)为全体n阶对称自正交相似矩阵的集合,n=2k。
3) anti-symmetric and self-orthogonal similar matrix
反对称自正交相似矩阵
1.
Let J=[0 Sk -Sk 0],A∈R2k×2k,if JAJT=AT,AT=-A,then A is called anti-symmetric and self-orthogonal similar matrix.
设R为实数域,A∈R2k×2k,J=[0 Sk -Sk 0,]若JAJT=A,AT=-A,则称A为反对称自正交相似矩阵。
4) Asymmetrical generalized positive definite matrix
非对称广义正定矩阵
5) Generalized per-symmetric matrix
广义广对称矩阵
6) anti-symmetric and self-orthogonal matrices
反对称自正交矩阵
补充资料:广义
范围较宽的定义(跟‘狭义’相对):~的杂文也可以包括小品文在内。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条