说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非光滑版Ricceri变分原理
1)  nonsmooth version Ricceri's variational principle
非光滑版Ricceri变分原理
2)  Ricceri's variational principle
Ricceri变分原理
3)  variational principle/discontinuous deformation
变分原理/非连续变形
4)  non-smooth theory
非光滑理论
1.
Application and prospect of bionic non-smooth theory in drilling engineering
仿生非光滑理论在钻井工程中的应用与前景
5)  non-smooth bifurcation
非光滑分岔
6)  nonsmooth analysis
非光滑分析
1.
Based on the theory of nonsmooth analysis, the viability condition of this class of differential inclusions at a point is verified by determining the consistency of a system of linear inequalities, or equivalently, by solving an auxiliary linear programming problem.
基于非光滑分析理论,通过判别一个线性不等式组的相容性,或等价地求解一个辅助的线性规划问题,来判别此微分包含在一点处是否满足可生存性条件。
2.
This paper discusses Lipschitz continuity of optimal value functions at lower level and compound objective function at upper level in the nondifferentiable two level Lipschitz programming, whose conponent functions are Lipschitz continuous, by using nonsmooth analysis theory.
本文对构成函数为Lipschitz函数的二层规划问题,利用非光滑分析工具,讨论了下层极值函数和上层复合目标函数的Lipschitz连续性,给出了这些函数的广义微分和广义方向导数的估计式。
3.
We study in this paper a problemof nonsmooth analysis of fm(A), defined as the sum of the m largest eigenvalues of A.
本文研究n阶实对称矩阵A的前m项最大特征值之和fm(A)的非光滑分析问题。
补充资料:变分原理(复变函数论中的)


变分原理(复变函数论中的)
omplex function theory) variational principles (in

  f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条