2) randomized question
随机问题
1.
Technique of randomized question reading CAPTCHA based on character feature;
基于字符特征的随机问题阅读式验证码技术
4) optimum mechanization
机械优化问题
1.
MATLAB extraction method of optimum mechanization;
机械优化问题的MATLAB求解方法
5) optimization problem
优化问题
1.
Kernel partial least squares based on least squares support vector machine primal-dual optimization problem;
基于最小二乘支持向量机对偶优化问题的核偏最小二乘
2.
A new algorithm for solving inequality constraint optimization problem;
一种求解不等式约束优化问题的新算法
3.
The Study and Empirical Analysis of Neural Network Methods for Optimization Problems;
优化问题神经网络方法研究及实证分析
6) optimization
[英][,ɔptimai'zeiʃən] [美][,ɑptɪmaɪ'zeʃən]
优化问题
1.
In this paper, a new generalized gradient projection method with inexact line search is proposed for the nonlinear optimization problem with linear constraints.
本文对线性约束优化问题提出了一个新的广义梯度投影法,该算法采用了非精确线性搜索,并在每次迭代运算中结合了广义投影矩阵和变尺度方法的思想确定其搜索方向。
2.
For analysing and studing the characteristic and optimized mechanism of transient chaotic neural network,based on analysis of transient chaotic neuron model,through programming the simulation analysis in the Matlab software to compare the neural network dynamic characteristic and various parameters regarding the network optimization process influence.
暂态混沌神经网络模型利用混沌所固有的随机性和轨道遍历性,在大范围内按其自身规律进行搜索,搜索过程按混沌轨道遍历,不受目标函数限制,从而具有克服陷入局部极小的能力可有效地解决一系列组合优化问题。
补充资料:随机过程论中的统计问题
随机过程论中的统计问题
statistical problems in the theory of stochastic processes
究对于探讨尸。与尸。可能的奇异性也是有用的. 例4假定观测或者为x(t)二w(t),其中w(0为一Wi印er过程(Wiener process)(H。假设),或者x(r)=州t)+w(t),其中附为一非随机函数(H,假设).如果m’6L2(0,T),则测度p(,,pl是相互绝对连续的,而如果。’必L:(0,T),则它们是相互奇异的.其似然比等于 d尸了 豆可Lx)-一{一合)〔优,(!)」2己亡·!川,(!)J·(亡)}· 例5.设x(t)二6十心(t),其中口为实参数而老(0为一零均值的平稳Gauss的Map珊过程(Markov妙cess),且有已知的相关函数厂(t)二。一“,‘,,:>0.此时测度尸子是相互绝对连续的,且有似然函数 dP不 万可气“)-一。p呀冬。二(。)、冬。二(:)、冬。:i、(才)‘: 一r tZ一’一、一’2“’一‘一‘2一才一‘一’- 一冬。2一牛。2::). 2“4-一j 特别地,x(o)+x(T)+:丁Jx(:)‘。关于族p万是一充分统计最(sul五cie以statistic), 随机过程统计中的线性问题.设观测了函数 血 x(。)二艺口,伞,(:)+七(:),(*) l其中奴t)是零均值且有己知的相关函数;(t,:)的随机过程,职,是已知的非随机函数,口二(0、,…,口*)是未知参数(口,为回归系数),而参数集0是R‘的一个子集.0,的线性估计是形如见c,二(t,)或其均方极限的估计量.找寻均方意义下的最优无偏线性估计的问题归结为解与r有关的线性代数或线性积分方程.事实上,最优估计目由对任何形如七=艺bj、(tj)且艺b,伞,(t,)=0的心组成的联立方程E。(吞,劲二0所确定.在若干情形下,当T~的时,用最小二乘方法渐近获得的O的估计,并不比最优线性估计坏,但前者在计算上更简单月.不依赖于:. 例6,在例5的条件下,k二1,中;(t)‘1.这时最优无偏线性估计最(血ea犷estin迫tor)为 、=.浩了「·(。)二(·)二)·(r)“亡{,而估计量T 。‘一喜f二(:)“。 T才-·一渐近地与之有相同的方差. G皿ss过程的统计问题.设{x(t):O蕊t簇T,p‘{}对所有口‘0为Gauss过程(Gaussian process).关于Gauss过程,有如下二者择一的结果:任何两个测度尸乙尸J或者相互绝对连续或者奇异.因为Gauss分布pJ是由其均值m。(:)二E。x(t)及其相关函数,。(s,t)=E,无(s)x(t)完全确定的,从而似然比d尸J/d尸J以一种复杂的方式由m。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条