1) (2k)th-order Newton's equation
2k阶牛顿方程
2) Newton equation
牛顿方程
1.
In the system of two energy levels atom, based on the quantum theory and considering the effects of the outfield on the atom system, we can get the conclusion that the direction of external force is contrary to average acceleration, which conflicts with quantum Newton equation.
在二能级原子系统中,考虑外场对原子系统的影响,根据量子理论推导,容易得到外力与外力贡献的平均加速度方向相反的结论,这与量子牛顿方程相抵触,称之为佯谬。
2.
In this paper the scattered angle in central force field is calculated by using calculus of functional vector analysis on base of Newton equation and the law of conservation of angular momentum, it avoides complex calculations in general textbook on basics of orbital equation of central force field.
本文从牛顿方程及角动量守恒定律出发 ,利用矢量函数的微积分运算技巧简捷地推导出中心力场中散射角 φ,避免了经典教科书中从轨道方程出发推导出 φ的繁琐性 ,不仅计算简洁 ,而且物理过程明确 。
3) (2k)th-order delay differential equation
2k阶时滞微分方程
5) quasi-Newton equation
拟牛顿方程
1.
In this paper,we propose a new quasi-Newton equation by doing the four-order Taylor series expansion for the objective function,and present a new quasi-Newton method based on the equation.
文章通过四阶泰勒展开提出了一种新拟牛顿方程,且给出了新的拟牛顿算法,并结合Wolfe非精确线性搜索证明了此新拟牛顿算法对一般非凸无约束优化问题的全局收敛性。
2.
A class of modified BFGS algorithm based on the new quasi-Newton equation Bk+1sk=k=yk+γksTksksk is presented in this paper to solve the unconstrained optimization problem, and the global convergence is proved under the condition that the objective function is uniformly convex, the parameter k satisfies |1-k|≤t′‖sk‖ (t′ is a constant).
针对无约束最优化问题 ,在已建立的一类新拟牛顿方程 Bk+ 1sk=yk =yk+ γks Tksksk的基础上 ,证明了满足新拟牛顿方程的一类改进 BFGS算法在修正矩阵 Bk 中参数 tk 满足 | 1 - tk|≤t′‖ sk‖ ( t′为任一常数 ) ,且目标函数一致凸的条件下 ,具有全局收敛性 。
3.
As we all know, Quasi-Newton equations lay the basis ofQuasi-Newton methods, according to the time when the Quasi-Newton equations appear, wecan classify them as :the original and the new ones.
大家都知道,拟牛顿方程是拟牛顿法的基础,按照出现的时间早晚可以分为原始的拟牛顿方程和新的拟牛顿方程。
6) pseudo-Newton equations
伪牛顿方程
1.
It is proved that the formula is the unique solution for which satisfiy pseudo-Newton equations.
讨论了无约束优化的伪Newtonδ-秩1校正公式,证明了伪Newtonδ-秩1校正公式是满足伪牛顿方程的唯一最优解和在目标函数满足二阶连续可微,其Hessian矩阵满足L ipsch itz条件和在最优值处的Hessian矩阵为数量矩阵时的伪Newtonδ-秩1的线性收敛性和超线性收敛性。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条