1) Asymptotic st
概率为1渐近稳定性
2) exponential stability in probability one
概率1指数渐近稳定
1.
By constructing an appropriate Lyapunov function and by using It formula and M-matrix as analytic tools,the problem of exponential stability in probability one about noisy time-delay BAM neural networks is discussed,and some algebraic criteria are .
构造一个适当的Lyapunov函数,应用It^o公式、M矩阵等工具讨论了在噪声环境下具有时滞的BAM神经网络概率1指数渐近稳定,得到了指数稳定的代数判据和两个推论,此判据只需验证仅由网络参数构成的矩阵是M矩阵即可,给网络设计带来方便。
3) Asymptotic stabilization in probability
依概率渐近稳定
4) Asymptotical stability
渐近稳定性
1.
Criteria on asymptotical stability of Cohen-Grossberg neural networks with continuously distributed time-delay
连续分布时滞Cohen-Grossberg神经网络渐近稳定性准则
2.
n this paper, some necessary and sufficient conditions of asymptotical stability of linear singular systems are presented, and some asymptotical stability criterions are given according to the equivalent systems and the equivalent transforms, and the regularity, attractivity and free_impulse of linear singular systems are considered.
在对广义线性系统正则性、吸引性和无脉冲性研究的基础上,提出广义线性系统平衡态渐近稳定的几个充分必要条件,给出了根据等价系统和等价变换判别广义线性系统渐近稳定性的几个准则,并用具体例子说明了这些准则的应用。
3.
The problem of the globally asymptotical stability of recurrent neural networks with time varying delay is investigated.
研究了带时变时滞的递归神经网络的全局渐近稳定性。
5) asymptotic stability
渐近稳定性
1.
Uniform asymptotic stability of 3rd-order time-variant discrete systems;
三阶时变离散系统的一致渐近稳定性
2.
Asymptotic stability of grey stochastic linear delay systems;
灰色随机线性时滞系统的渐近稳定性
3.
Uniformly asymptotic stability of the 4th-order time-varying discrete systems;
四阶时变离散系统的一致渐近稳定性
6) asymptotically stability
渐近稳定性
1.
Based on the criteria, a simple control law is proposed to guarantee the uniformly asymptotically stability of zero state.
对于一般离散双线性系统 ,本文提出了系统在线性反馈下的稳定性判据和最小吸引域 ,并给出了一种简单的控制方案 ,保证闭环系统在原点的一致渐近稳定性 。
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条