1) global asymptotic stability
全局渐近稳定性
1.
Analysis on global asymptotic stability for a kind of extended BAM models;
一类推广的BAM模型的全局渐近稳定性分析
2.
Global asymptotic stability of impulsive delay differential equations;
脉冲时滞微分方程的全局渐近稳定性
3.
We obtained the boundary of its positive semi-trajectory with positive initial values,the global asymptotic stability of its equilibrium,the existence of its limit cycles.
得到它的解的有界性、正平衡点的全局渐近稳定性和极限环的存在性。
2) globally asymptotic stability
全局渐近稳定性
1.
The positive invariant property,eventual boundedness,non-persistence,permanence,extinction,and globally asymptotic stability of the system was investigated.
详细考察了系统的正不变性、最终有界性、非持续生存、持久性、灭绝性及全局渐近稳定性。
2.
The globally asymptotic stability of nonnegative verge equilibrium is discussed.
研究一类具有阶段结构和功能性反应的捕食系统,讨论了该系统非负边界平衡点的全局渐近稳定性,论述了该生态系统的永久持续生存的充分条件。
3.
The existence,uniqueness and globally asymptotic stability of periodic solutions for a class of higher dimensional differential systems with piecewise continuous delays are discussed.
讨论了一类具分段连续时滞的高维微分系统的周期解的存在唯一性和全局渐近稳定性,得到了新的实用的判别条件,推广或改进了文[2-4,6,9]的相关结果。
3) global asymptotical stability
全局渐近稳定性
1.
By constructing suitable Lyapunov function,some sufficient conditions are obtained which guarantee the global asymptotical stability of periodic solutions of discrete Leslie system with mutual interference.
通过构造适当的Lyapunov函数,建立了保证该类具有相互干扰的离散Leslie系统周期正解的全局渐近稳定性的充分性条件。
2.
By the means of the stable theory and method of differential equation,this paper proves the existence and global asymptotical stability of the disease-free equilibrium and the endemic equilibrium,and obtains the basic reproductive number which determines whether the disease dies out or remains.
在考虑因病死亡因素的情况下,建立了一类具有常数输入的总人口变动的SIR和SIS组合传染病模型,利用微分方程稳定性理论和方法证明了无病平衡点和地方病平衡点的存在性及全局渐近稳定性,并且得到了决定疾病绝灭或持续生存的基本再生数。
3.
In this paper,the monotonicity principles are utilized to study separately the global asymptotical stability of two-dimensional and three-dimensional cooperative(competitive) systems with non-positive divergence,whose results develop the known conclusions.
利用负散度和不可约合作(竞争)系统的单调性质,分别研究二维和三维合作(竞争)系统的全局渐近稳定性。
4) global stability
全局渐近稳定性
1.
Mathematical analyses of the model equations with regard to invariance of non-negativity,nature of equilibria and global stability are analyzed.
分析了系统的非负不变性、边界平衡点性质及全局渐近稳定性 。
2.
The invariance of non-negativity,nature of equilibria and global stability of the system are analyzed.
报道了一类带有扩散和时滞的捕食与被捕食系统,分析了系统的非负不变性,边界平衡点性质及全局渐近稳定性。
3.
This paper studies nonnegative equilibriums for prey-predator models with Holling-Ⅱ functional response and discusses the global stability of nonnegative equilibriums when the parameters satisfy some given conditions.
主要研究一类具有Holling-Ⅱ型响应函数的捕食模型的非负平衡解问题,讨论了当参数满足适当条件时,非负平衡点的全局渐近稳定性。
5) globally asymptotically stability
全局渐近稳定性
1.
Using Floquet theory and comparison theorem of impulsive differential equation,the existence and globally asymptotically stability of infection-free periodic solution are proven.
利用Floquet乘子理论和脉冲微分方程比较得到无病周期解的存在性和全局渐近稳定性;利用分支定理得到正周期解存在的分支参数。
2.
The globally asymptotically stability of zero solutions of certain second, third and fourth order systems are studied in this paper.
讨论若干个二阶、三阶和四阶非线性系统零解的全局渐近稳定性。
6) Locally/globally asymptotically stable
局部/全局渐近稳定性
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条