说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 区域渐近稳定性
1)  regional asymptotic stability
区域渐近稳定性
1.
The regional asymptotic stability (or attractability) and uniformly persistence are discussed.
研究了一类具有标准传染率的两种群相互竞争的自治类型的S(易感者) I(染病者) S(易感者)传染病模型,讨论了平衡点的区域渐近稳定性(或吸引性)和系统的一致持续生存。
2.
The regional asymptotic stability of the equilibrium points is discussed.
研究了一类两种群相互竞争的自治类型的SIS(易感者 染病者 易感者 )传染病模型 ,讨论了平衡点的区域渐近稳定性
2)  asymptotic stability region
渐近稳定区域
1.
The authors have established a quantitative stability result of quadratic delay difference systems, in which the delay r >0 is an arbitrary integer, also, for quadratic delay difference systems of simple form they have given the estimates of stability region and asymptotic stability region with the delay r<r * , where r * is the maximum admissible value of delay under certain conditions.
曾建立了二次式时滞差分系统定量的稳定性结果,其中时滞r>0是任意的整数;也曾对形式较为简单的二次式时滞差分系统作出了时滞r<r*时的稳定区域和渐近稳定区域估计,其中r*是在一定条件下的最大可接受的时滞。
2.
That is,under certain conditions one can not only confirm the uniform stability and uniform asymptotic stability of the zero solution,but also estimate the corresponding stability region and asymptotic stability region.
初步建立了二次式时滞差分系统定量的稳定性理论,即在一定的条件下,不仅可以断言零解的一致稳定性和一致渐近稳定性,且可以估计出相应的稳定区域和渐近稳定区域。
3.
This paper discusses discrete_delay singular systems by using Lyapunov s method and estimates the size of the uniformly stable region and asymptotic stability region around zero for discrete_delay singular systems.
利用Lyapunov方法讨论离散滞后广义系统 ,并给出了该类系统的零解一致稳定区域和渐近稳定区域的大小估计 。
3)  asymptotic stability domains
渐近稳定域
1.
By constructing the appropriate v function,the positive invariance properties and positive precompactness of a kind of nonlinear systems was proved,which is used to research the stability and the attractiveness,the criterion of the estimates of asymptotic stability domains was derived,the result of Liapunov asymptotic stability domains in previous document was improved.
通过构造合适的v函数,证明了一类非线性系统的正不变性质和正准紧性质,利用该系统的正不变性质和正准紧性质研究了系统的稳定性和吸引性,得到了该系统渐近稳定域估计的判别条件,推广并改进了已有文献中Liapunov渐近稳定域的结果。
4)  Asymptotical stability
渐近稳定性
1.
Criteria on asymptotical stability of Cohen-Grossberg neural networks with continuously distributed time-delay
连续分布时滞Cohen-Grossberg神经网络渐近稳定性准则
2.
n this paper, some necessary and sufficient conditions of asymptotical stability of linear singular systems are presented, and some asymptotical stability criterions are given according to the equivalent systems and the equivalent transforms, and the regularity, attractivity and free_impulse of linear singular systems are considered.
在对广义线性系统正则性、吸引性和无脉冲性研究的基础上,提出广义线性系统平衡态渐近稳定的几个充分必要条件,给出了根据等价系统和等价变换判别广义线性系统渐近稳定性的几个准则,并用具体例子说明了这些准则的应用。
3.
The problem of the globally asymptotical stability of recurrent neural networks with time varying delay is investigated.
研究了带时变时滞的递归神经网络的全局渐近稳定性。
5)  asymptotic stability
渐近稳定性
1.
Uniform asymptotic stability of 3rd-order time-variant discrete systems;
三阶时变离散系统的一致渐近稳定性
2.
Asymptotic stability of grey stochastic linear delay systems;
灰色随机线性时滞系统的渐近稳定性
3.
Uniformly asymptotic stability of the 4th-order time-varying discrete systems;
四阶时变离散系统的一致渐近稳定性
6)  asymptotically stability
渐近稳定性
1.
Based on the criteria, a simple control law is proposed to guarantee the uniformly asymptotically stability of zero state.
对于一般离散双线性系统 ,本文提出了系统在线性反馈下的稳定性判据和最小吸引域 ,并给出了一种简单的控制方案 ,保证闭环系统在原点的一致渐近稳定性 。
补充资料:渐近稳定解


渐近稳定解
asymptotically - stable solution

渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}0,一起对于一切:):有定义,并且对于任意的。>0,存在占,0<占
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条