1) Equation of Homogeneous Type and Its Solution
齐次方程及其求解
2) solution of inhomogeneous equation
非齐次方程解
3) stepwise solving method of equations set
方程组逐次求解
5) homogeneous equation
齐次方程
1.
The treatment,by which the non-homogeneous equation was transformed into homogeneous equation,not only simplifies.
将非齐次方程转化为齐次方程不仅使问题变得大为简化,同时也减少了数值计算的工作量。
2.
Considering the symplectic relations of variations in the thermal equilibrium formulations and gradient equations,the non-homogeneous Hamilton canonical equation was transformed into homogeneous equation for solving independently the coupling problem of piezothermoelastic bodies by increasing the dimensions of the canonical equation.
考虑热平衡方程与导热方程中变量的对偶关系,通过增加正则方程的维数,成功地将非齐次的正则方程转化为能独立求解的压电热弹性体耦合问题的齐次方程。
3.
First of all,a non-linear Schrodinger equation can be converted into homogeneous equations,and then the precise integration method can be used to solve these problems.
首先将非线性薛定谔方程变形为齐次方程的形式,然后用精细积分法模拟其随时间的演化过程。
6) homogeneous/non-homogeneous equations
齐次/非齐次方程
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条