说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 齐次方程组
1)  homogeneous equation set
齐次方程组
1.
In the solving process of homogeneous equation set,the operational procedure for elementary line transformation is sometimes not simple and convenient as it seems to be.
齐次方程组求解的过程中,初等行变换的运算过程有时显得并不简便。
2)  homogenous linear equations
齐次线性方程组
1.
Analysis technology of degrees of freedom of workpiece based on homogenous linear equations;
基于齐次线性方程组的工件自由度分析技术
2.
The judgment theorems for locating correctness were concluded by skillfully combining the solutions of homogenous linear equations with locating schemes.
建立了描述加工尺寸与应限制自由度之间关系的自由度约束原理;巧妙地将齐次线性方程组解的性质和工件的各种定位方案联系起来,提出了定位合理性的判定定理;最后提出了不合理定位方案产生原因的判定依据,以指导工艺人员能够合理地设计夹具。
3)  homogeneous linear equations
齐次线性方程组
1.
A simple formulated solution of homogeneous linear equations;
齐次线性方程组的一种简捷的公式化解法
2.
It shows the proof of four points on a circle by the knowledge of determinant;the methods of resolving applied problems by theories about the solution of homogeneous linear equations;and the proof of inequality by positive definite and positive semi-definite matrix.
讨论利用行列式知识证明四点共圆、利用齐次线性方程组解的理论解有关应用题、利用正定与半正定矩阵知识证明不等式等高等代数方法在中学数学中的应用。
4)  linear homogeneous differential equation system
线性齐次方程组
5)  homogeneous linear equation set
齐次线性方程组
1.
The result of the prestress design is actually the solution space of a homogeneous linear equation set.
通过分析发现 ,预应力设计的结果实际上就是一个齐次线性方程组的解空间。
6)  system of homogeneous linear equations
齐次线性方程组
1.
The article discusses rank of a matrix by the solution theorem of system of homogeneous linear equations,and proves several famous inequalities and two propositions on rank of a matrix.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
2.
This article given another kind of proof using algebra method by system of homogeneous linear equations to the geometry question.
本文对这一几何问题利用齐次线性方程组给予了代数方法的又一种证明。
补充资料:拟线性双曲型方程和方程组


拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems

尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条