1) The Extension Of Positive Matrix
矩阵正定性的推广
2) metapositive definiteness of matrix
矩阵的次正定性
4) gengealixed positive definite for D
关于D的广义正定矩阵
5) generalized positive definite matrix
广义正定矩阵
1.
Generalization for definition of asymmetrical generalized positive definite matrix;
非对称广义正定矩阵定义的再推广
2.
Based on the definitions of generalized positive definite matrix, a further study of it is made in the present paper, and several new results are obtained as a consequence.
本文利用广义正定矩阵的概念 ,对其作进一步的研究 ,并由此得出广义正定矩阵的几个新结果。
3.
The definition of generalized positire definite matrax is given,namely:real square matrix of order n A is called generalized positive definite matrix,if X≠0∈R n×1 , X′AX>0.
给出了广义正定矩阵的定义:设A∈Mn( R) ,A′≠A,若对任意X≠0 ∈Rn×1 ,都有X′AX> 0,则称方阵A是广义正定的;并研究了广义正定矩阵的一些判别方法。
6) generalized positive semidefinite matrix
广义半正定矩阵
1.
In this paper we generalize and improve Oppenhein s inequality for generalized positive semidefinite matrix.
在广义半正定矩阵上推广、改进了Oppenheim不等式。
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条