1) generalized positive definite complex matrix
广义正定复矩阵
1.
When the concept of the generalized positive definite complex matrix is introduced,we should also discuss corresponding properties and structures which are undoubtedly meaningful to enrich the content of the matrix theory.
当引入广义正定复矩阵这个概念之后,也应该讨论它相应的性质与结构,这对丰富矩阵论的内容无疑是有意义的。
2) complex generalized positive definite matrix
复广义正定矩阵
1.
To In this paper,the definition of complex generalized positive definite matrix is given,its fundamental properties are studied,and its equivalent characteristics are established.
本文给出了复广义正定矩阵的概念,研究了其基本性质,建立了复广义正定矩阵的若干等价特征。
2.
The concepts of complex metapositive definite matrix and complex generalized positive definite matrix are presented,several inequalities of the norm of determinant are established,thus Ostrowski Taussky s inequality and Oppenheim s theorem are generalized.
给出复亚正定矩阵和复广义正定矩阵的概念,建立了它们的行列式模的几个不等式,推广了Ostrowski-Taussky不等式和Oppenheim定
3.
In this paper,Oppenheim s theorem of complex generalized positive definite matrix of (CP) D n type is established,thus some known results are generalized.
建立了(CP)Dn类复广义正定矩阵的Oppenheim定理,推广了已有结
3) Generalized complex positive definite matrix
广义复正定矩阵
4) Ux-reply generalized positive definite matrices
Ux-复亚广义正定矩阵
5) quasi-generalized complex positive definite matrix
拟复广义正定矩阵
1.
Furthermore, a new estimation of the lower bound of the determinant module on the Hadamard product of a Hermitian positive definite matrix and a quasi-generalized complex positive definite matrix is obtained by using the improvement and the properties of quasi-generalized complex positive definite matrices.
首先改进了关于Hermitian正定矩阵的Hadamard乘积的行列式的下界估计的经典的Oppenheim不等式的加强形式,然后应用这个结论和拟复广义正定矩阵的性质,得到了Hermitian正定矩阵和拟复广义正定阵的Hadamard乘积的行列式的模的新下界估计。
6) generalized metapositive definite complex matrix
广义次正定复矩阵
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条