1) extended sub-positive definite matrix
广义次正定矩阵
1.
The property of extended sub-positive definite matrix is studied further by means of the method of matrix analysis to obtain the lower estimated Oppenheim inequality of Hadamard multiplication determinant(belonging) to two extended sub-positive definite matrices under more general conditions and improve the past(results) in the adaptation range and estimated exactness.
用矩阵分析的方法,通过对广义次正定矩阵性质的进一步研究,得到了更一般条件下的两个广义次正定矩阵的Hadamard乘积的行列式下界估计的Oppenheim不等式,在适用范围和估计精度上都改进了已有的相应结果。
2) sub-generalized positive definite matrix
次广义正定矩阵
1.
In this paper is presented the definition of the sub-generalized positive definite matrix, and the inverse problem of matrix equation AX=B on the sub-generalized positive definite matrix is studied.
给出了次广义正定矩阵的定义 ,研究了矩阵方程AX =B在次广义正定矩阵类上的反问题 。
3) meta-generalized semi-positive definite matrix
次广义半正定矩阵
4) extended sub metapositive definiteness matrix
广义亚次正定矩阵
1.
The definition of the extended sub metapositive definiteness matrix and n×n real matrix meta Volterra multiplicator are given.
推广了亚次正定矩阵的概念 ,即广义亚次正定矩阵和实方阵的次Volterra乘子的概念 ,讨论并给出了广义亚次正定矩阵的一些基本性质及实方阵存在次Volterra乘子的条件。
5) generalized metapositive definite complex matrix
广义次正定复矩阵
6) generalized positive definite matrix
广义正定矩阵
1.
Generalization for definition of asymmetrical generalized positive definite matrix;
非对称广义正定矩阵定义的再推广
2.
Based on the definitions of generalized positive definite matrix, a further study of it is made in the present paper, and several new results are obtained as a consequence.
本文利用广义正定矩阵的概念 ,对其作进一步的研究 ,并由此得出广义正定矩阵的几个新结果。
3.
The definition of generalized positire definite matrax is given,namely:real square matrix of order n A is called generalized positive definite matrix,if X≠0∈R n×1 , X′AX>0.
给出了广义正定矩阵的定义:设A∈Mn( R) ,A′≠A,若对任意X≠0 ∈Rn×1 ,都有X′AX> 0,则称方阵A是广义正定的;并研究了广义正定矩阵的一些判别方法。
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条