1) algebraic closure of a field
域的代数闭包
2) closure algebra
闭包代数
3) algebraic closure
代数闭包
4) algebraically closed field
代数闭域
1.
In this paper,we discuss the classification of 3-dimensionally commutative algebras on algebraically closed field.
研究了代数闭域上三维交换代数的分类。
2.
A theorem of integral divisibility for multivariate polynomial ring C[x 1,x 2,…,x n] on complex number field is given in [1], this paper extends the theorem to the case of k[x 1,x 2,…,x n] , where k is any algebraically closed field.
[1 ]给出复数域C上多元多项式环 C[x1 ,x2 ,… ,xn]的一类整除性定理 ,本文把它推广为任意代数闭域 k上多元多项式环 k[x1 ,x2 ,… ,xn]的情形 。
5) The closure systems Of universal algebras
泛代数的闭包系统
6) algebraic L-fuzzy closure operator
代数的L-fuzzy闭包算子
1.
When L is a finite distributive lattice,the algebraic L-fuzzy closure operator and the equivalent characterizations of L-fuzzy closure system induced by algebraic L-fuzzy closure operator are discussed.
当L为有限分配格时,讨论了代数的L-fuzzy闭包算子及其所诱导的闭包系统的等价刻画。
补充资料:代数闭包
代数闭包
algebraic closure
代数闭包【滋geb面cd仍眠;朗re6p绷ec劝e期一l,域k的 域k的代数扩张(见域的扩张(extension ofafield)),使之成为一个代数闭域(algcbrai以lly closedfield).每个域都存在这样的扩张且在同构意义下是唯一的.实数域的代数闭包是复数域(见代数学基本定理(al罗bra,fundamental theorem of)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条