1) biorthogonal set of function
双正交函数集
2) orthogonal function set
正交函数集
1.
In this paper,we describe the conception of orthicon,orthogonal function set and completion of orthogonal function set conception and compared to them.
本文首先阐述了正交、正交函数集以及完备正交函数集的概念,并进行了深入的探讨。
3) biorthogonal function
双正交函数
4) orthogonal double linear function basis
正交双线性函数
1.
In this paper,We give concepts of orthogonal double linear function basis and positive definite double linear function basis,and show that (1) every double linear function can be lineally expressed by orthogonal double linear function basis;(2) every symmetric double linear function can be lineally expressed by positive definite double linear function basis.
给出了正交双线性函数基与正定双线性函数基;证明了:(1)每个双线性函数均可由正交双线性函数基惟一线性表出;(2)每个对称双线性函数均可由正定双线性函数基惟一线性表出。
5) biorthogonal scaling functions
双正交尺度函数
6) orthogonal function
正交函数
1.
Least square fitting of pump characteristic curve by orthogonal function;
用正交函数实现水泵性能曲线的最小二乘拟合
2.
This paper introduced the basic principle to acquire height anomaly using orthogonal function,took the control surveying results of Hufengling section of Suiman road in Heilongjiang to testify,and drew specific conclusions which is valuable to direct engineering height surveying.
本文介绍了用正交函数法求高程异常的基本原理,并利用已知的黑龙江绥满路虎峰岭段高速公路的控制测量成果进行了检核,并得出了具体的结论,对工程高程测量具有一定的指导意义。
3.
Using the orthogonal function system mixed a weight function as the basis function,the drawback of forming an ill-conditioned system of equations for the moving least-square approximation method is overcome.
以带权的正交函数作为基函数,克服了滑动最小二乘法容易形成病态方程组的缺点。
补充资料:双正交系
双正交系
biorthogona! system
双正交系{bi留山呢阅习s邓tem .6味甲r一-0姗-Ma飞 一付集合州r}和!乙}(/了),其中{“1}是个(拓扑)向量空间X的元素集,毛迁是丫的(拓扑)对偶空间刃‘的儿素集,它们满足条树:~与:书、时 粼a;)二<若,。、>逻0,当t二s时,易(“)毖0‘这里火二、是藕合尤和灭‘的典范双线性型).例如.个双正交系可由一组阮hal乙日er基(s chauder basis)和义按它展开的系数所形成的集合来构成在一个有标量积、·,·、和基币。;的Hil-bert空间H中,满足条件 二氏的集合巨「:也是一组基,这甲当t二对付,众,二1,{含,笋、时,氏,二。这组基称为{a}的对偶(d喇)基、幸封月为H=H,,集合抽}和笼执形成仅正交系.特别是“中的基称为规范正交的(ortholun朋l),如果它对偶于自身. 然而,也存在甚至不形成弱基的双正交系;一个例子是在赋以范数’一f一suPI八劝{的周期连续函数空间中的函数集。‘版,其中左任Z,、任R.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条