说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 张量积表示
1)  tensor product representation
张量积表示
2)  tensor product of representations
表示的张量积
3)  tensor representation
张量表示
1.
Considering the color,favor,spin and space degrees of freedom,the wave functions of pesudoscalar-meson are constructed by using tensor representation of group theory.
考虑色、味道、自旋以及空间自由度,运用张量表示及群论的方法,构造了赝标介子(q)的波函数。
4)  tensor representation theory
张量表示理论
5)  tensor function representation theory
张量函数表示理论
1.
This paper combines the internal variable theory and the tensor function representation theory to establish the constitutive equations of the deformation theory and the increment theory for the isotropic and rate independent materials.
在内变量理论的框架下,针对各向同性率无关材料,使用张量函数表示理论建立了塑性应变全量及增量本构关系的最一般的张量不变性表示。
6)  F-curvature tensor representation
F-曲率张量表示式
补充资料:张量积


张量积
tensor product

3)西个禅{夺A一l{a,,11与B的华早积(‘ensorProduct oft明matrices)或Kronecker积(Kronee-kerpreduct)是矩阵 }}“,.B二“_Bl} A凶B=日........····.……}I, }}a们,B…a。:。B}}这里,A是含一单位元的结合交换环k上的一个(mx。)矩阵,B是k上的一个(Pxq)矩阵,而A⑧B是人上的(m尸xn,)矩阵. 矩阵的张量积的性质是二 (A,十AZ)⑧B=A、⑧B十AZ⑧B, 注⑧(刀,+刀2)=通⑧刀,+月⑧BZ, 二(通⑧刀)=:注OB=注⑧“B,其‘l」“Ck, (A⑧B)(C⑧D)=AC⑧BD.如果m=。且p=q,则 det(A⑧B)二(detA)p(detB)”.令k是一个域,爪”八且p二q.则A⑧B相似于B⑧A,且det(A⑧E,一E。⑧B),其中E、是单位矩阵,等同于A与B的特征多项式的结式. 如果::V~V’与厂评~w’均为有限生成自由k么模的同态,A与B是它们在特定基下的矩阵,那么A⑧B是同态仪⑧广V⑧评~训⑧W‘在由基向量的张量积所组成的基下的矩阵.l)含单位元的结合交换环A上两个么模V,与L。的张量积(tensor Pll刃uet oft明unitary xllodllles)是月模V:⑧,VZ连同一个A双线性映射 (x,,xZ)l,戈,⑧x:〔VJ⑧;VZ,该映射在以下意义上是泛的:对于任意A双线性映射月:V.XV:一评,这里评是任意A模,存在一个唯一的A线性映射b:V,⑧,VZ一W,使得 jj(‘.,,2)一l,(,,⑧xZ),‘.〔叭,‘2〔岭·不计自然同构,该张量积是唯一确定的.张量积总是存在的,目可以这样构造:设F是由集合V.x VZ生少戊的自由A模,其月子模R由形如 (xl+y,灭:)一(xl,xZ)一(y,xZ), (.、l,义:+:)一(关l,xZ)一(x.,:), (c义,,戈2)一c(x,,xZ), (x,,c义2)一e(义.,xZ)的元素生成,其中义.,y6VI,二2,:任VZ,c〔A;作F模R的商模,则,、l⑧xZ二(x.,xZ)+R,如果去掉月的交换性这一要求,那么类似于上面所描述的构造能够从一个右A模V.与一个左A模VZ产生一个A阅群叭⑧,F:,亦称为这两个禅的张量积戈[l]). 在一「文中总设定A是交换的. 张量积具有以下性质: A⑧月V兰V, V,⑧刁VZ里K⑧,V!, (V。⑧:VZ)⑧‘IV;兰V,⑧,(VZ⑧,V3), 〔:不一」。,下一*(·,。刁w),对于A上任意模V,F,w. 如果V,与VZ是自由A模,(x),。,与(y,),。,是FI与F:的基,那么(x‘⑧夕J)、‘,,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条