1) cardinal series expansion
主级数展开
2) series expansion
级数展开
1.
In this paper,by using the theory of doubly quasi-periodic Riemann boundary value problemandseries expansion of complex variables,the problem of an infinite piezoelectric materials containing adoubly periodic parallelogrammic array of cylindrical inclusions under anti-plane line force andin-plane linecharge is studied.
利用双周期Riemann边值问题的解析函数理论和级数展开的分析方法,借助Eshelby夹杂原理研究了压电复合材料中双周期圆柱形夹杂的反平面问题,获得了夹杂和基体内电弹性场的复式表达式,并利用数值算例分析了双周期夹杂对应力和电位移的影响。
2.
Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared.
分别用无穷级数展开方法和数值积分计算中的高斯 拉盖尔求积法对高能重离子碰撞中能量密度和粒子密度数值进行计算 ,并对结果及级数展开中的高次项和一次项的大小进行了比较。
3.
A new three-dimensional quasi-vectorial beam propagation method based on the series expansion (SE-QV-BPM) is proposed for simulating the optical rib waveguide and directional coupler based on InGaAs/InAlAs multiple quantum wells.
提出了一种基于级数展开的三维准矢量束传播法(SE_QV_BPM)用以分析由InGaAs/InAlAs多量子阱构成的脊形光波导及定向耦合器。
3) power series expansion
幂级数展开
1.
Based on the theory of modal superposition and power series expansion, a modal superposition method for the sensitivity analysis of FRF is proposed in this paper.
基于模态展开和幂级数展开原理,提出了一种频响函数灵敏度分析的模态展开法。
2.
Based on the modal superposition and power series expansion when the considered eigenvectors lie in the middle frequency range,the high and low modal can be truncated at the same time.
特征值与特征向量灵敏度分析在振动控制、结构动力优化设计等邻域中有有着广泛的应用本文根据模态展开和幂级数展开原理,导出了一种可用于特征向量组灵敏度分析的幂级数展开法当所考察的特征向量组处于系统的低频区时,应用该方法可对系统中、高阶模态实施模态截断和加速;而当所考察的特征向量组处于系统的中频区时,应用该方法可对系统的高阶模态和低阶模态同时实施截断和加速数值示例计算表明,本文提出的方法是可行的
3.
The method of the power series expansion for Abelian integral by Mathematica program is used to prove that there are two limit cycles with arbitrary location.
采用将Abel积分进行幂级数展开的方法,借助于Mathematica编程计算,证明了其Poincaré分支可以产生位置具有任意性的两个极限环。
4) Taylor series expansion
Taylor级数展开
1.
Then by means of Taylor series expansion and interval calculation,we can obtain the interval ranges of stress intensity factors.
该方法以区间数学为基础,将不确定参数描述为区间变量;再利用Taylor级数展开通过区间运算得到应力强度因子的区间范围,从而为工程设计提供可信的数据。
2.
Relying on truncated Taylor series expansion of triangular functions,this scheme constructs low-order polynomial to approximate the metric function after proper choice of expansion order.
该方法利用三角函数的Taylor级数展开,通过合理选取展开阶数对度量函数进行低阶函数逼近,并借助低阶多项式求根实现快速频偏估计。
3.
In the situation that the rate of maneuvering acceleration variety(also named Jerk) is assumed to be an exponentially correlated random process with non-zero mean and the Taylor series expansion is performed on the components of state of the Jerk model,the modified differential equations of the components of state can be obtained,and the influence of the Jerk on the syste.
在假设机动加速度变化率(即加加速度)为非0均值指数相关随机过程的条件下,通过对Jerk模型状态分量作Taylor级数展开,得到了各状态分量的Jerk修正方程,使得机动加加速度对系统各状态分量的作用得到反映,减小了模型误差。
6) Taylor expansion
幂级数展开
1.
Making use of derivative rule of complex functions,how to compute a foot point latitude in ellipsoidal geodesy by Taylor expansion is described.
针对子午线弧长反解计算过于繁琐的问题,利用复合函数的求导法则,变换变量进行幂级数展开,给出了通项公式,利用Hermite插值原理推导了各参数,借助Mathematica计算机代数系统,得出了这些公式用偏心率e表示的幂级数表达式。
补充资料:Cornish-Fisher展开
Cornish-Fisher展开
Cornish - Fisher expansion
C仪nish一Fi劝er展开!C.mi劝一Fisher exl倒圈I佣;】心甲-“。tua一中”.ePa Pa300欲二e」 一个(接近标准正态)分布的分位数用标准正态分布的相应分位数按一小参数的幂的渐近展开.它曾由E.A.Cornish和R .A.曰sher(【l〕)加以研究.如果F恤,门是依赖于参数t的分布函数,小(劝是具有参数(01)的标准正态分布函数,且当t,O时F(x,t)一中(劝,那么,在对川x,t)施加某些假定下,函数义=F‘I。(:).t](F一‘为石的反函数)的cornish一Fishe:展开有如下形式: ”刁~{ 、一、芝狱:)t‘()(,”’),‘1、 1万l其中S(约是:的多项式.类似地,可以定义函数:一中’〔F伙,t)](。’为巾的反函数)依t的幂的comish-Fisher展开: /:艺e(二丫十()(l”).(2) J{其中Q(川是弋的多项式.公式(2)是由展开。一’为关f点巾(劝的Tayl伽级数,再用Ed罗worth展开式而得到的,公式(l)则是(2)的反演 如果X是有分布函数F行,匀的随机变量,则变量Z二Z困二小’{F(X,日l有标准正态分布,且从(扮式可推出,当t,O时,中扛)逼近变量 _”王: z二、十艺口(x、“ r专的分布函数,优于它逼近F(x、。).如果X有零期望与单位方差,则展开式(l)的头几项有如下形式 、二:一l下!h!忙)]一}y:h:(:)+才h,仁月平一其中;1二、:心一2,:2一、4/、;.、为X的r阶半不变量,”l阁一含HZ。),“2阁一女11:侧,“。阁一六·[2H,今)十HI(朔,而月:仓)是1女rmite多项式,它们由如下关系定义_ 叫:)H;{:)一、一叮兰些土(叫:)二一如:)) 山厂有关服从Pearson分布族极限律的随机变量的展开,可见{3}亦见随机变量变换(raTzdom varlables,trans-follnations of).[补注1关于利用Ed罗worth展开(亦见砚gewo曲级数(Ed罗做,rth series))获得否2)的方法,亦见IAI].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条