1) quasi-stationary oscillation
准稳振荡
3) stationary oscillation
平稳振荡
1.
Stability and stationary oscillation of differential-algebraic interval systems;
微分代数区间动力系统的稳定性与平稳振荡
2.
Persistence and stationary oscillation of the cyclic and predator-prey system of three species with Holling s type III functional response;
具HollingⅢ型功能反应的三维循环捕食系统的持久性和平稳振荡
3.
Stationary Oscillation for Nonlinear Periodic Systems;
非线性周期系统的平稳振荡
4) stable oscillation
平稳振荡
1.
In this paper, the stable oscillations of a linear delay large-scale system are discussed by using the theroem of large-scale systems and the fixed-point theroem and the Lyapunov function.
利用大系统的分解理论、李雅普诺夫函数及不动点定理,研究了一类线性周期时滞大系统的平稳振荡及其性质,得到了一些新的结果,给出了周期解的估计式。
2.
The sufficient criteria for stable oscillation or class of non artonomous system is obtained.
利用矩阵测度的性质,通过建立对线性系统解的估计形式,得到了这类系统平稳振荡的充分判据。
3.
Further,we discuss the problem of stable oscillation for a class oflarge scale non-linear time-varying period discrete system.
本文分别利用向量Lyapunov函数方法和标量Lyapunov函数方法,给出了判定离散大系统解的有界性与周期解的存在性的充分条件,并讨论了一类具有非线性时变周期离散大系统的平稳振荡存在性问题。
5) harmonic oscillation
平稳振荡
1.
In this paper, the method of singular Lyapunov function is used to study singular nonlinear systems, the sufficient conditions about its asymptotic stability and the harmonic oscillation theorm for it are given.
本文运用广义李雅普诺夫函数方法研究了一类广义非线性系统,给出了其渐近稳定 的判别条件,对相应的周期系统给出了其平稳振荡定理。
2.
The existence of periodic of the discrete large scale systems was studied by using Lyapunov s method, the several new sufficient conditions are obtained for the existence of a unique asymptotically stable m periodic solution namely harmonic oscillation in the discrete large scale systems.
利用 L yapunov方法研究离散大系统周期解的存在性 ,给出 m-周期解存在、唯一稳定即平稳振荡存在的几个新判
补充资料:裂纹失稳扩展
分子式:
CAS号:
性质:材料内部裂纹尖端的应力场强度因子达到或超过材料的断裂韧性之后发生的裂纹快速扩展。裂纹失稳扩展将导致材料迅速断裂。
CAS号:
性质:材料内部裂纹尖端的应力场强度因子达到或超过材料的断裂韧性之后发生的裂纹快速扩展。裂纹失稳扩展将导致材料迅速断裂。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条