说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 振量子数
1)  vibrational quantum number
振量子数
2)  vibrational quantum number
振动量子数
3)  quantum resonance
量子共振
1.
Method: Test level of Vitamin C and microelement Se contained inside of patient with cancer by means of quantum resonance Samecom QRS.
方法 :对临床上已确诊为恶性肿瘤患者用量子共振同康信息检测仪检测其体内的维生素C和微量元素硒。
2.
Via quantum resonance spectrometer (QRS), hair from 80 malignant tumors patients, 50 benign tumors patients and 50 healthy subjects was detected to determine their immunity, tumor, malignant tumor, benign tumor, zinc and virus.
采用量子共振检测仪 ,通过头发测定了 80例恶性肿瘤患者、50例良性肿瘤患者和 50例无肿瘤者的免疫功能、肿瘤、恶性肿瘤、良性肿瘤、发锌和病毒感染的代码量价 。
3.
The ratchet effect under high-order quantum resonance conditions was further studied.
计算还发现,高阶量子共振下系统的棘齿效应变得很不明显,而且外部驱动势的周期噪声很容易破坏体系的棘齿效应。
4)  quantum oscillation
量子振荡
1.
The magnetization as a function of the chemical potential of a Quasionedimension rectangular harmonic quantum wire at T=0 K is calculated analytically using the effectivemass approximation method,resulting in more profound quantum oscillation structures than those found in the 3DEG case;this arises completely from the coupling between electric and magnetic potential.
采用有效质量近似方法,计算了0K温度时准一维方形谐振势系统中电子磁化强度与化学势之间的函数关系,结果发现有比三维电子气体更为复杂的量子振荡结构,这是由于电子受电势和磁势共同束缚的结果。
5)  parametric oscillator
参数振子
1.
Using the formulized approach to the SU(1,1) h(4) time-dependent system, which is derived from the combination of the formulation of the time-dependent Bogoliubov transformation and the evolution equation of the system, we obtain the time evolution operator , state function and Heisenberg uncertainty relation of the parametric oscillator with cavity losses under the weak coupling approximation.
本文利用含时波戈留波夫变换与时间演化方程相结合得到的求解SU(1,1)⊕h(4)量子系统的时间演化算符和演化态的普遍公式,我们导出了带腔损耗的参数振子在弱耦合近似下的演化算符,态函数和不确定乘积,并讨论了系统的压缩特性。
6)  quantum harmonic oscillator
量子谐振子
1.
Comparison of quantum harmonic oscillator and classical harmonic oscillator;
量子谐振子与经典谐振子的比较
2.
In this paper,the author deduces the momentum-position uncertainty relation of the classical harmonic oscillator,and gives the correspondence relation between it and the uncertainty relation of quantum harmonic oscillator.
推出了经典谐振子的动量-位置不确定关系,并且给出它和量子谐振子的不确定关系之间的对应关系。
3.
The evolution problem of two quantum harmonic oscillators with ccordinate and mo-mentum first-order coupling is studied. The exact solution is derived by introducing appropriate oper-aters and auxiliary functionals.
提出了具有坐标和动量一阶耦合的两量子谐振子的演化问题。
补充资料:单量子阱(见量子阱)


单量子阱(见量子阱)
single quantum well

单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条