1) Quantum oscillator model
量子谐振子模型
2) one dimension harmonic oscillator model
一维谐振子模型
1.
Calculated three order nonlinear polarzability of C_(60) molecule using classical one dimension harmonic oscillator model and agreed with experimen
用经典的一维谐振子模型计算了C_(60)分子的三阶非线性极化率,与实验结果比较,符合的很好。
3) harmonic oscillator model
简谐振子模型
1.
Through the canonical transformation,we first established a harmonic oscillator model of black holes.
利用Reissner-Nordstr m黑洞的质量、电荷和它们各自的对偶量构成的四维相空间,经过规范变换,首先建立黑洞的简谐振子模型,并采用该模型,研究Reissner-Nordstr m黑洞的量子面积谱,在此基础上进一步给出量子数条件。
2.
Though the canonical transformation,we first establish a harmonic oscillator model of black holes.
利用Reissner-Nordstr m度规中的参量M、Q及它们各自的对偶量πM、πQ构成的四维相空间,经过规范变换,首先建立黑洞的简谐振子模型,并采用该模型,进一步研究Reissner-Nordstr m黑洞的量子面积谱。
4) nonlinear resonance pattern
非简谐振子模型
1.
Starting from the nonlinear resonance pattern,we calculated third order polarizability,and gave the principle of the calculation.
利用非简谐振子模型计算了三阶非线性极化率 。
5) quantum harmonic oscillator
量子谐振子
1.
Comparison of quantum harmonic oscillator and classical harmonic oscillator;
量子谐振子与经典谐振子的比较
2.
In this paper,the author deduces the momentum-position uncertainty relation of the classical harmonic oscillator,and gives the correspondence relation between it and the uncertainty relation of quantum harmonic oscillator.
推出了经典谐振子的动量-位置不确定关系,并且给出它和量子谐振子的不确定关系之间的对应关系。
3.
The evolution problem of two quantum harmonic oscillators with ccordinate and mo-mentum first-order coupling is studied. The exact solution is derived by introducing appropriate oper-aters and auxiliary functionals.
提出了具有坐标和动量一阶耦合的两量子谐振子的演化问题。
6) quantum oscillator
量子谐振子
1.
By using the general linear quantum transformation theory, the quantum oscillator is solved, and the condition of the quantum oscillator tend to classical limit is given by analogy with classicaloscillator.
运用广义线性量子变换的普遍理论求解了量子谐振子 ,同经典谐振子类比给出了量子谐振子趋近于经典极限的条件 ,相干态是最理想的经典极限态 。
2.
By analysing one-dimensional quantum oscillator,the classical limit conditions of the quantum system also expresses as →0.
以一维量子谐振子为例,经过分析,认为量子系统经典极限条件也可表示为 h→0。
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条