2) 0-minimal right *-ideal
0-极小右*-理想
3) universally minimal right ideal
普遍极小右理想
4) Minimum condition on principal right ideals
主右理想极小条件
5) maximal right ideal
极大右理想
6) minimal ideal
极小理想
1.
Submaximal ideal and subminimal ideal of semiring;
半环的次极大理想与次极小理想
补充资料:极小理想
极小理想
minimal ideal
极小理想In‘l‘11班11山川;M“a邢Ma月‘nu‘11八e“J 给定类型的某代数系统的理想的偏序集(partjallyo代七代dset)的一个极小元.由于理想的集合上的序是由包含关系定义的,极小理想是不包含异于自身的同类型理想的一个理想.对多算子群(特别是环)和格,总是假定这个理想的偏序集不包含零理想.这一点不同于半群.如果没有特别提到理想的类别,极小理想是取所有(非零)双边理想的集合中的极小者. 在半群(s枷召muP)S中,一个极小双边理想如果存在,则是唯一的且是最小双边理想:它称为半群S的核(ke住lel of the sem堪rouP).不是每一个半群都有核(例如,无穷单演半群(~罗别c~翻。叩)),但是,举例说,在任何有限半群中核存在.核是一个理想单半群(见单半群(51宜甲le Sen刀.grouP)).如果半群S的核是一个群(g旧叩),则S称为同群(ho伽脚叩).半群S是同群,当且仅当在S中存在元素z,它被S的任何元素从左边也从右边整除(即:‘xs n Sx对任何x‘S);在这种情况下核由所有这样的元素组成.例如,每一有限交换半群是一同群, 如果半群S有一极小左理想L,则对任何x‘S积Lx也是极小左理想,此外,每一极小左理想能按这种方式得到.每一极小左理想是左单半群.在一个具有极小左理想的半群中每一左理想包含极小左理想,且所有极小左理想(它们是两两不相交的)的并是这半群的核.如果半群S有一极小左理想L和一极小右理想R,则RnL二RL是S中子群,且L=Se,R=es,这里e是这子群的单位元素;积LR与S的核一致,且在此情形下是一个完全单半群(句m Pletely名】mples咖.9.叩). 对具有零的半群,值得关注的是考虑非零理想,而在相应的理想的偏序集中的一个极小元称为0极小理想(o.min运坦11次习)(左理想(leftid司),右理想川ght ideal),双边理想(t认。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条