1) maximal normal operator
极大正规算子
2) maximal normal subgroup
极大正规子群
1.
This article proves that in the homomorphism of G onto ■,the inverse image of a maximal normal subgroup in ■ is also a maximal normal subgroup in G.
本文得到了在同态满射下,极大正规子群的逆象也是极大正规子群,并给出了极大正规子群的象也是极大正规子群的一些等价条件。
2.
A problem,maximal normal subgroups of Mgroups are also M-groups,was studied by introducing the concept of M-pairs.
通过引入M-对的概念,研究了一个M-群的极大正规子群何时也是M-群的问题,特别是证明了一个强M-群的每个极大正规子群均为M-群。
3.
It is proved that S(G) is the product of the simple normal subgroups of the group G,and R(G) is the joint of the maximal normal subgroups of the group G.
设S(G)是群G的所有本质子群的交,R(G)是群G的所有多余子群的积,证明S(G)是G的所有单的正规子群的积,R(G)是G的所有极大正规子群的交。
3) maximal normal p-subgroup
极大正规p-子群
4) Maximal Abel Normal divisor
极大Abel正规子群
5) normal operator
正规算子
1.
The concept of a special normal operator, self-conjugate operator, in Hilbert space was extended to a polynomial conjugate operator.
将Hilbert空间上特殊的正规算子———自共轭算子的概念推广到多项式共轭算子。
2.
The properties of the operator and the necessary and sufficient conditions for the regular value to exist were studied using the concept and properties of normal operators in Hilbert space, the spectrum mapping principle and analogy.
应用希尔伯特空间上正规算子的概念、性质、谱映射定理和类推的方法,研究了该类算子的性质及正则值存在的充要条件。
3.
The properties of the polynomial conjugate operator and the necessary and sufficient conditions for the regular valve to exist are studied by using spectral decomposition and properties of normal operator in Hilbert space.
应用希尔伯特空间上正规算子的概念,性质和谱分解定理,研究了多项式共轭算子的性质及正则值存在的充要条件。
6) maximal operator
极大算子
1.
Boundedness of maximal operators in Morrey-type spaces on homogeneous spaces;
齐型空间上Morrey型空间中极大算子的有界特征
2.
V∫_(-1)~1 f(x-γ(t))(dt/t) and the maximal operator M is defined by: Mf(x)=■(1/h)|∫_0~h f[x-γ(t)]dt| For the approximately homogeneous curve γ,the author proves that both H and M are bounded on L~P (R~n),p>1.
∫_(-1)~1f(x—γ(t))(dt/t)相应的极大算子 M 定义为Mf(x)=■(1/h)|∫_0~h f(x—γ(t))dt|对近似齐次曲线γ,我们证得 H 和 M 都在 L~p(R~n)上有界,p>1。
3.
In this paper,we discuss the boundeness of the commutator of the maximal operator.
在齐型空间上Herz空间中,通过范数概念定义了相应的有界平均震荡函数,进而利用调和分析中相关理论讨论了极大算子交换子的有界性,并给出具体证明过程,从而推广了该理论体系。
补充资料:极大紧子群
极大紧子群
maximal compact subgroup
极大紧子群[叮.油般】c伽声Ct,纯r叨p;M毗,M幼I,H明KOMn毗“a,n叭印ynna」,拓扑群G的 一个紧子群(见紧群(comPact grouP))K CG,它不作为真子群被包含在G的任何紧子群内.例如,尤二50(n)对于G=SL(n,R),K二{e}对于一个可解单连通Lie群G. 在任意群G里,极大紧子群不一定存在(例如,G“CL(V),V是一个无限维Hilbert空间),而一且即使存在,它们之间也可能有不同构的. Lie群的极大紧子群已被广泛地研究.如果G是一个连通Lie群,那么G的任意紧子群都被包含在某个极大紧子群内(特别,极大紧子群一定存在),并且G的一切极大紧子群都是连通的且彼此共扼.群G的空间微分同胚于KxR”.因此,很多关于Lie群的拓扑问题都归结为紧玩群(Lie gro叩,com-pact)相应的问题.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条