说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 平面射影几何
1)  plane projective geometry
平面射影几何
2)  Projective geometry
射影几何
1.
Algebraic Structure and Foundation of Geometry Ⅲ Axioms of projective geometry;
代数结构与几何基础Ⅲ——射影几何的公理体系
2.
Application of partial derivative in projective geometry
偏导数在射影几何中的应用
3.
The correctness of relative configurations and the method for finding instant centers are expounded by projective geometry.
用射影几何理论阐明有关定式求解的正确性及方法 ,讨论定式的有效性及组合应用的可能性 ;并给出了根据邻接矩阵寻找定式及判别定式有效性的计算机求解方
3)  plane geometry
平面几何
1.
A Tutorship Expert System for Plane Geometry Based on Networks Services;
一个基于网络服务的平面几何辅导专家系统
2.
Comparison Study on Structure of New and Old Plane Geometry Textbooks in Junior High School;
初中平面几何新旧教材结构的比较研究
3.
Research of using the axiomatization viewpoint to guide the teaching of plane geometry in the middle school
用公理化系统观点指导中学平面几何的教学与研究
4)  geometry [英][dʒi'ɔmətri]  [美][dʒɪ'ɑmətrɪ]
平面几何
1.
The knowledge of calculating the geometry surface and proving the surface methods was formed.
从面积计算与等积证明、利用等积变换处理平面几何问题、利用等积变换作图等展开论证。
2.
Results suggested that during the process of geometry problem solving, the level of awareness of related problems is one of the major factors that influence the effect of problem-solving transfer.
通过实验研究,平面几何靶题难度以及解题者对靶题与源题之间存在着共性关系的加工水平对解题迁移的影响得到了验证。
5)  projection geometry
射影几何学
1.
Abstract: Some basic ways of proving three lines share one point from the view points of analyticgeometry and projection geometry are expounded in this essay.
从仿射几何学与射影几何学的基本方法出发,简述了“三线共点”问题的一些基本的证明方法。
6)  plane geometry method
平面几何法
补充资料:射影几何
Image:11462018617435119.jpg
射影几何

射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。

射影几何的发展简况

十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。

基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。

在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。

射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家——笛沙格和帕斯卡。

笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。

迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。

帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。1658年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。

不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。

射影几何的主要奠基人是19世纪的彭赛列。他是画法几何的创始人蒙日的学生。蒙日带动了他的许多学生用综合法研究几何。由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。

1822年,彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。他通过几何方法引进无穷远虚圆点,研究了配极对应并用它来确立对偶原理。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条