说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对合反自同构
1)  involutorial anti automorphism
对合反自同构
1.
We introduce the conception of involutorial anti automorphism over distributive pseudolattices,define and get some properties of M-P inverse of matrix.
在分配伪格上引入对合反自同构和矩阵M-P逆的概念,得到矩阵M-P逆的若干性质。
2)  involution [英]['invə'lju:ʃən]  [美][,ɪnvə'luʃən]
对合自同构
3)  antiautomorphism
反自同构
4)  anti automorphism
反自同构
1.
The forms of automorphisms and anti automorphisms of reflexive algebra A are given.
给出了自反代数A的自同构和反自同构的具体形式。
5)  anti-automorphism
反自同构
1.
Moreover, we have obtained certain precise relations between the solutions and automorphisms or anti-automorphisms of Mn(k).
本文给出了域K上全矩阵代数M_n(k)中几类特殊矩阵方程组的解以及它们与代数M_n(K)的自同构或反自同构之间的密切关
2.
Let R be a prime ring of characteristic not two,T be an anti-automorphism but not an involutionof R.
设R是特征不等于2的素环,T为R的非对合(T ̄2≠1)反自同构,若R满足如下条件之一,则R为交换环:(i)x ̄2x ̄T-x ̄Tx ̄2∈Z(R),x∈R;(ii)x ̄2x ̄T-xx ̄Tx∈Z(R),x∈R。
6)  ring antiautomorphism
环反自同构
补充资料:对合


对合
involution

同调(homology).3)代数簇的对合(inVOlution ofanal罗b面c~-ty)是簇的二阶自同构.设X是代数封闭域火上的非奇异射影代数簇而g是X的对合,则相对于循环群{g}的作用的商簇X/{。}是射影簇,称为秒章g下的商(quotient under thein沁lution),g的不动点的集合F(妇形成x的非奇异子簇.若F(g)在每个点上有余维数1,则g的象是非奇异簇.簇X/{列的非奇异模型见的数值不变量可利用L刊rs血tz公式(Lefschetz fon刀ula)来计算.对合[加v川团叨;HH“0脚”““1 l)二阶自同态(endomo甲hism),即将对象映到自身的满射,且其平方是恒等态射(也见具有对合的范畴(c ategory with~lution”.周期映射(伴对闭沁Tnapping)有时也称为对合,它是态射且它的某个非零幂是恒等态射.最小的这样的幂称为该对合的周期(拌nod). 通常,群G的所谓对合是指它的二阶元. 实数或复数域上代数E的对合是E到自身的满射x~义‘,且它满足下述对合公理(~lution耐-o二:l),’一、,对所有二若E’;乏),(二+,)一二‘+y’对所有、,夕‘E;3)(又x)’=Ix’,对所有xoE及相应域中所有石4)(x力’=y’x’,对所有x,y任E.复数域上具有对合的代数E称为对称代数(s犷nr理示cal罗bra)或对合代数(~lutiona】ge腼).2)射影几何学中的对合是射影变换,它的平方是恒等变换,实的射影直线的非恒等对合恰有两个不动点(双曲对合(hyl姆r加lic inv 01丽on))或没有不动点(椭圆对合(elliPtic in铂lution)).设A,B是双曲对合的不动点,则在该对合下的对应点M及M,,调和地分割点对A,B.射影平面上的对合是双曲(下)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条