1) incomplete factorial function
不完全阶乘函数
2) incomplete gamma function
不完全函数
4) incomplete lagrange function
不完全Lagrange函数
1.
For a class of generalized fractional programming with infinite fractions in the objective function involving,two incomplete lagrange functions are given.
对于一类目标函数中有无限个分式的广义分式规划,给出了两个不完全Lagrange函数,并利用已有的最优性必要条件,在(F,α,ρ,d)-凸性的条件下,证明了鞍点最优性准则。
2.
For a class of generalized fractional programming whose objective function was composed of infinite fractions,a sufficient condition was presented and two incomplete lagrange functions were given.
对于一类目标函数中有无限个分式的广义分式规划,讨论了其最优性充分条件;给出了2个不完全Lagrange函数,并利用已有的最优性必要条件,在B-(p,r)-不变凸性的条件下,证明了鞍点最优性准则。
5) incompletion Γ funcition
不完全Γ函数
6) incomplete Γ function
不完全Г函数
1.
In this paper, P-Ⅲ distribution curve has been transformed into incomplete Γ function and the model of P-Ⅲ distribution curve is got by transformation of the mathematical expre.
为此 ,通过数学表达式的变换 ,将皮尔逊 -Ⅲ型分布转换为不完全Г函数 ,并给出其快速通用的算法模型。
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条