1) discrete variation
离散变异
2) discrete mutation operator
离散变异算子
1.
Thus,the discrete crossover operator and discrete mutation operator were proposed to make the genetic operator search in discrete space.
结合离散变量优化问题与遗传算法的特点,提出离散交叉算子和离散变异算子,使遗传算子真正在离散空间中进行搜索。
3) singular discrete
奇异离散
1.
This paper presents new existence results for singular discrete initial value problems.
对于奇异离散初值问题给出一个新的存在性结果,特别当非线性项出现奇异且可能变号时。
4) discrete variable
离散变量
1.
Network iterative optimization of virtual n-dimensional discrete variables;
拟n维离散变量网格迭代优化方法
2.
Study on discrete variables optimization design for heliocentric-type reducer based on simulated annealing algorithm;
基于SA算法的行星齿轮减速器离散变量优化设计
3.
Superficial talking on optimum structure design of discrete variable with improving method;
浅谈离散变量改进算法的结构优化设计
5) discrete variables
离散变量
1.
How to determine discrete variables in structural optimization by neutral networks and genetic algorithm;
遗传算法和神经网络组合求解离散变量结构优化问题
2.
Chaotic genetic algorithm for structural optimization with discrete variables;
离散变量结构优化设计的混沌遗传算法
3.
Engineering structure s discrete variables optimum desig nunder multiple loading conditions;
工程结构的多工况离散变量优化设计
6) discrete variable frequency
离散变频
1.
This paper studied some technical problems arising during the soft starting of three-phase asynchronous motors with heavy loads,which was achieved by means of discrete variable frequency.
针对采用离散变频方式实现三相异步电动机重载软起动过程的一些技术问题进行了分析和研究。
2.
Based on characteristics of discrete variable frequency soft starting, a novel speed measuring method using residual voltage after AC dump was proposed, and its counting formula, analysis of errors were presented.
针对离散变频技术调压调频的特点,提出了基于电动机失电残余电压的测速方法,推导出了转速计算公式,并进行了误差分析。
3.
To solve the key problem of soft starting based on discrete variable frequency,the influence of different trigger-ing modes on the phase of first-harmonic of generated voltage was investigated and the selection of frequency steps and the switching process were analyzed.
针对离散变频软起动方法中的关键问题,研究了不同触发方式对分频电压基波相位的影响,并分析了各离散频段的选取及切换过程。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条