说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 离散Hartley变换
1)  discrete Hartley transform
离散Hartley变换
1.
A fast recursive algorithm of discrete Hartley transform;
离散Hartley变换的一种快速递归算法
2.
A discrete Hartley transform based OFDM model;
基于离散Hartley变换的OFDM实现模型
3.
An UWB system that employs discrete Hartley transform(DHT) to perform modulation and demodulation is proposed.
本文提出一种利用离散Hartley变换(DHT)进行调制/解调的超宽带系统,并推导了信道估计与均衡算法。
2)  DHT
离散Hartley变换
1.
An improved Discrete Hartley Transform(DHT-LMS)adaptive algorithm is provided which is em ployed for cancelling noises in phoning.
提出了一种改进的基于离散Hartley变换(DHT)自适应滤波算法(DHT-LMS),将其应用于电话通信噪声抵消系统,并进行了实验研究,其结果表明,将该算法应用于自适应语音降噪系统,能获得较好的降噪效果,且基于信号处理器TMS320LF2407上开发实现简单,系统结构紧凑、可靠性高。
3)  discrete Hartley transform (DHT)
离散Hartley变换(DHT)
4)  Generalized Discrete Hartley Transform (GDHT)
广义离散Hartley变换(GDHT)
5)  two dimensional discrete Hartley transform(2D DHT)
二维离散Hartley变换(2D-DHT)
6)  two dimensional discrete Hartley transform Ⅱ(2D DHT Ⅱ)
二维离散Hartley变换(2D-DHT-)
补充资料:N点有限长序列的离散傅里叶变换
      时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示,定义为
  
  (1)
  式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
  
   (2)
  式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
  
  由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
  
  DFT的原理  是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N
  
  DFT的主要性质  共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
  
  
  DFT的快速算法  又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条