说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 差分方程式
1)  difference equation
差分方程式
2)  implicit difference equation
隐式差分方程
1.
It changes a coefficient matrix of implicit difference equation into a specific block matrix, and gives complete computation formulas of back substitution.
本文给出一种线性变换,将隐式差分方程的系数矩阵转换成特定的分块矩阵,推导出了完整的回代计算公式,可以更灵活地构造计算方法,并为子结构法提供了理论证明。
2.
The focal point is to construct a new embedding overlapped iterative algorithm for solving one-dimensional implicit difference equations.
主要构造了求解一维隐式差分方程的四点嵌套迭代并行算法 ,并证明了它的收敛性 。
3)  hidden form differential equation
隐格式差分方程
1.
Then a hidden form differential equation is gotten.
在数值计算中 ,应用部分线性法处理非线性非齐次热传导方程 ,得到相应的隐格式差分方程 ,再用追赶法求解隐格式差分方程 ,得出绝热边界条件下的温度的时间和空间分布 ,从而得出激光退火的再结晶厚度。
4)  implicit difference systems
隐式差分方程组
1.
For solving implicit difference systems of Sine Gordon nonlinear hyperbolic partialdifferential equation,the method of recursive decoupling is presented and discussed.
用递推去耦法解SineGordon非线性双曲型偏微分方程的隐式差分方程组。
5)  three-point difference equations
三点式差分方程
6)  difference equation
差分方程
1.
Oscillation of second order neutral difference equation with continuous arguments;
具有连续变量的二阶中立型差分方程的振动性
2.
Existence of multiple positive solutions of a class of p-Laplacian difference equations;
一类p-Laplacian差分方程多个正解的存在性
3.
Global attractivity of difference equations with positive and negative items;
带有正负项的差分方程的全局吸引性
补充资料:差分方程


差分方程
difference equation

  差分方程[成口记旧战日甲.d曲;pa3.oeT“oe ypa皿e“.el 含有未知函数的有限差分的方程.假设y(n)“凡是依赖于整数变量n二O,士l,士2,…的函数;令么夕。=火、、一夕。,么’+’y。=△(△’夕。), △诊夕。=△夕。,m二l,2,二是有限差分.犷y。含有函数y在m+1个点。,·‘·,”十m上的值.公式 二「m〕 △~一y,=乙L一l)一’l,,ly。,*气l) 。二局、一LyJ’””成立.方程 F(n:y。,Ay。,…,A从y。)二0(2)称为差分方程(山玉代泊优叫吸石的),其中y是未知函数,而F是给定函数.用由所求函数值表示的表达式 (l)代替(2)中的有限差分,它就化成形如 F(n;夕二,y。、。,…,y。+,),0(3)的方程. 如果aF/a凡笋0,aF/日y。十,笋0,即方程(3)确实含有y。和y。+州,则方程(3)称为m阶差分方程(功一th。川erd正rerence叹uation). 线性差分方程理论得到最充分的发展,它与线性常微分方程理论有很多共同之处(见【1]一!31).方程 a,(n)夕。+,+…+a。(n)y。,f。(4)是m阶线性差分方程这里天二f(n)是给定函数,a*(n)(丸二o,…,m)是给定系数,气(n)笋o,a。(n)护O·满足方程(4)的函数凡“夕(n)称为差分方程的解.和微分方程情形一样,差分方程的解也有特解和通解之别.差分方程(4)的通解(罗ne阁solutk,n tothed江比ren沈叹旧tjon)是依赖于阴个任意参数的解,而每个特解都可以由取定参数的某些值得到通常,具体的参数值是由补充条件来确定的.Q比出y问题是一个典型:给定y。,…,y一,,人,当n=m,m+1,’·’时求方程(4)的解y。.差分方程(4)的解的存在性及构造解的方法由下面的格式来建立.考虑(4)的齐次差分方程 气(”)y。十。+…+a。(n)y,”0.(5) 下面的命题成立: l)假设此‘),…,y沪是方程〔5)的解以及‘:,”’,c。是一组任意常数,则函数c,对,’十…十几对“’也是方程(5)的解. 2)假设此,’,一,对叫是方程(5)的,个解以及行列式 {,孟,,…,召,,{ ly病与’‘’y扁月}不为零,则齐次差分方程(5)的通解为 ,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条