1)  edmos
增强型 耗尽型模式金属氧化物半导体
2)  enhancement depletion mos
增强型耗尽型模式金属氧化物半导体
3)  enhanced PID
增强型PID
1.
The enhanced PID position control arithmetic and unattached tilt roll control are applied in system.
系统采用增强型PID位置控制算法、独立倾辊控制等改进技术 ,提高了系统的响应速度 ,实现了带材厚度 μm级控制 ,现场运行取得了良好效
4)  enhanced Cascade
增强型Cascade
1.
Aiming at the shortage of entirely inheriting prior classifiers in the Nesting Cascade algorithm,an enhanced Cascade algorithm that has independence characteristic and inheritance specia.
针对Nesting Cascade完全继承前层分类器的不足之处,提出一种具有自主和继承双重特性的增强型Cascade算法。
5)  boosted profiled bar
增强型钢
6)  Augmented
增强型
1.
Spline Method for High-Precision Inter-Satellite Relative Positioning Based on Augmented Single-Frequency GPS;
基于增强型单频GPS的高精度星间相对定位样条方法
2.
Spline Method for High-Precision Inter-Satellite Relative Positioning Based on Augmented DGPS;
基于增强型DGPS高精度星间相对定位的样条方法
7)  enhanced SVG
增强型SVG
1.
Development of 100 kVA enhanced SVG based on three-phase four-wire power system;
100kVA三相四线系统用增强型SVG的研制
8)  enhancement-mode
增强型
1.
The material structure of GaAs-based InGaP/AlGaAs/InGaAs PHEMTs was optimized to obtain the positive threshold voltage of an enhancement-mode PHEMT.
优化了GaAs基InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMT)的外延结构,有利于获得增强型PHEMT的正向阈值电压。
2.
An extraction method of the component parameter values of an enhancement-mode InGaP/AlGaAs/InGaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software.
介绍了增强型InGaP/AlGaAs/InGaAs PHEMT小信号等效电路中元件参数值的提取方法,并利用IC-CAP软件EEHEMT1模型提取了参数。
9)  enhanced SPI
增强型SPI
1.
Extending large capacity Flash based on enhanced SPI;
基于增强型SPI接口的大容量Flash扩展实现
10)  EFEC
增强型FEC
1.
Study on EFEC is mainly applied to the optical communication which time delay is not requested strictly and the coding plus should be very high.
进行EFEC(增强型FEC)的研制,主要应用于时延要求不严编码增益特别高的光通信系统。
补充资料:增强型与耗尽型金属-氧化物-半导体集成电路
      耗尽型MOS晶体管用作负载管,增强型MOS晶体管用作驱动管组成反相器(图1),并以这种反相器作为基本单元而构成各种集成电路。这种集成电路简称E/D MOS。
  
  
  特点  E/D MOS电路的速度快,电压摆幅大,集成密度高。MOS反相器的每级门延迟取决于负载电容的充电和放电速度。在负载电容一定的条件下,充电电流的大小是决定反相器延迟的关键因素。各种MOS反相器的负载特性见图2。在E/D MOS反相器中,作为负载的耗尽型管一般工作在共栅源(栅与源相连,其电压uGS=0)状态。把耗尽型MOS晶体管的输出特性IDS~VDS曲线,沿纵轴翻转180o,取出其中uGS=0的曲线,即可得到E/D MOS反相器的负载(图2)。E/D MOS反相器具有接近于理想恒流源的负载特性。与E/E MOS反相器(负载管和驱动管都用增强型MOS晶体管的)相比,同样尺寸的理想E/D MOS电路,可以获得更高的工作速度,其门延迟(tpd)可减少至十几分之一。由于耗尽型管存在衬偏调制效应,E/D MOS反相器的负载特性变差,tpd的实际改进只有1/5~1/8。此外,由于E/DMOS反相器输出电压uo没有阈电压损失,最高输出电压uo可达到电源电压UDD=5伏(图1)。因此,比饱和负载E/E MOS反相器的电压摆幅大。另一方面,由于E/D MOS反相器的负载特性较好,为了达到同样的门延迟,E/D MOS反相器的负载管可以选用较小的宽长比,从而占用较少的面积;为了得到相同的低电平,E/D MOS反相器的βR值也比E/E MOS反相器的βR值小些。与E/E MOS电路相比,E/D MOS电路的集成密度约可提高一倍。
  
  
  结构与工艺  只有合理的版图设计和采用先进的工艺技术,才能真正实现E/D MOS电路的优点。图3是E/D MOS反相器的剖面示意图。E/DMOS电路的基本工艺与 NMOS电路类同(见N沟道金属-氧化物-半导体集成电路)。其中耗尽管的初始沟道,是通过砷或磷的离子注入而形成的。为了使负载管的栅与源短接,在生长多晶硅之前,需要进行一次"埋孔"光刻。先进的 E/D MOS的结构和工艺有以下特点。①准等平面:引用氮化硅层实现选择性氧化,降低了场氧化层的台阶;②N沟道器件:电子迁移率约为空穴迁移率的三倍,因而N沟道器件有利于提高导电因子;③硅栅自对准:用多晶硅作栅,可多一层布线。结合自对准,可使栅、源和栅、漏寄生电容大大减小。
  
  
  采用准等平面、 N沟道硅栅自对准技术制作的 E/D MOS电路,已达到tpd≈4纳秒,功耗Pd≈1毫瓦,集成密度约为300门/毫米2。E/D MOS电路和CMOS电路是MOS大规模集成电路中比较好的电路形式。CMOS电路(见互补金属-氧化物-半导体集成电路)比E/D MOS电路的功耗约低两个数量级,而E/D MOS电路的集成密度却比CMOS电路约高一倍,其工艺也比CMOS电路简单。E/D MOS电路和CMOS电路技术相结合,是超大规模集成电路技术发展的主要方向。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条