1) mutual utility independence
相互效用独立性
2) mutual independence model
相互独立性模型
1.
The authors propose two methods to evaluate the mutual independence utilizing conditional mutual information or conditional CHI statistics, and present a method to construct a mutual independence model (MID-Model)for initial features set.
为此,提出利用互信息(MI)或者CHI统计量评估特征之间的相互独立性,建立特征相互独立性模型(MID-Model)。
3) mutually independent
相互独立
1.
We conclude more accrate result in this paper: set {An} is a mutually independent random sequence,if ∑∞n=1p(An)=∞,the ∑ni=1IAi/∑ni=1p(Ai)→1 a.
得到比上述引理更精确的结果:设{An}是相互独立的随机事件序列,若∑∞n=1p(An)=∞,则有∑ni=1IAi/∑ni=1p(Ai)→1a。
2.
Then the explanation that the sufficient and necessary condition of random variable ξ1+ξ2 and ξ1-ξ2 as well as ξ1cosα+ξ2sinα and-ξ1sinα+ξ2cosα are mutually independent is conducted.
根据随机变量相互独立的条件,推导了二元正态分布随机变量的线性函数1η=pξ1+q2ξ与2η=m1ξ+n2ξ相互独立的充要条件是nqσ22+rσ12σ(np+mq)+mp21σ=0(其中m、n、p、q为非零实数,且np-mq≠0),并做了详细证明。
3.
This paper,taking the two-dimensional separate random variable as an example,produced the mutually independent distinctions method for separate random variable,and made a comparison between them.
以二维离散型随机变量为例,给出了离散型随机变量相互独立的几个判别方法,并对其进行了比较。
4) independent mutually
相互独立
1.
Then a necessary and sufficient condition that the random variables are independent mutually is given.
讨论了多元函数与某个变量无关的充分条件及多元函数的变量能分离的充分必要条件,并给出随机变量相互独立的一个充分必要条件。
补充资料:效用可能性曲线
效用可能性曲线是一条表示在给定另一个人所得的效用时一个人能获得的最大效用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条