2) complete normalized orthogonal system
完全正交系
3) completely orthogonal
完全正交的
4) completeness / symplectic orthogonal system
完全性/辛正交系
5) complete orthogonal decomposition
完全正交分解
1.
In this paper,firstly we will give a complete orthogonal decomposition of Lα2(∏i=1 r D,dμα) is given,Then we define a kind of Toeplitz operators,and show boundedness,compactness and Schatten-von Neumann properties of them.
假设Lα,2(∏i=1 rD,dμα)是乘积空间∏i=1rD上的带有加权测度dμα(z)=∑i=1rαi+1/π(1-|z|2)αidm(z)的平方可积函数空间,在本文中我们首先给出了空间Lα,2(∏i=1rD,dμα)的一个完全正交分解,然后我们定义了一类Toeplitz型算子Tbk,并且证明了它们的有界性、紧性及Schatten-von Neumann性质。
6) completely orthonormal system
完全规范正交系
1.
On the foundation of the conception of orthonormal basis in finite dimensional Euclidean space,this paper provides the theory of completely orthonormal system in infinite dimensional Euclidean space.
从有限维欧氏空间的标准正交基概念出发,构建了无限维欧氏空间的完全规范正交系理论。
补充资料:Fourier级数(关于正交多项式的)
Fourier级数(关于正交多项式的)
rthogonal polynomials) Fourier series (in
F血的er级数(关于正交多项式的)【I饭的er sedes(加川如卿.1州ylm血‘);。”晓p,八(no opTOroHa‘-眼M,。oro呱。aM)] 形式为 艺。。p。(l) 月之0的级数,其中{尸。}是在区间(a,b)上关于权函数h正交的多项式系(见正交多项式(ort加即间即妙-no而alS)),系数{。。}由公式 b a。一J儿(*)f(*)尸。〔二)、(2)给出.这里,f属于函数类L:=L之f(a,b),h],即它的平方在正交性区间(a,b)上关于权函数h可和(玫比g比可积). 对任意正交级数,(l)的部分和{s。(x,f)}是f的依L:度量的最佳逼近,且a,满足条件 浊a。=0·(3)在证明级数(l)在一个点x或在(a,b)中的某个集合上收敛时,通常利用等式f(x)一s。(戈,f)=拜。汇a。(甲二)只十;一a。+:(价二)只(x)l,其中{a。(叭)}是辅助函数毋二的Founer系数,对于固定的x, 川门=力匕2二丛兰上.。。(。.bl. X一汇而拼。是由Cll南.川回{抽均.以公式(Ch由toffel一Dar·boux fonn“巨)给出的系数.如果正交性区间[a,b]有限,毋乒几且序列笼只圣在给定的点x有界,则级数(l)收敛到值f(x). 对于f6L一L:l(a,b),h」,即在区间(a,b)上关于权函数h可和的函数类,也可定义系数(2).对有限区间!a,b],如果f“L,【(a,b),hl且序列{凡}在整个区间[a,b]上一致有界,则条件(3)成立.在这些条件下,在点x可a,bJ处如果叭〔L,I(a,b),h],则级数(l)收敛到值f(x). 设A是区间(a,b)中的某个集合,序列王尸。}在A上一致有界,设B=[a,b〕\A,记L,(A)‘L,【A,川是在A上关于权函数h的p次可和的函数类.如果对固定的x已Al,有叭任L,(A)及叭。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条