1) connectivity pair
连通性对<偶>
2) Bipanconnetivity
偶泛连通性
3) relative connectivity
相对连通性
4) connected bipartite graph
连通偶图
1.
This paper gives the bounds of the second largest eigenvalue of Laplacian matrix of connected bipartite graph and characterizes all graphs which attain the bounds.
给出仅依赖阶数的连通偶图的Laplacian矩阵的第二大特征值的界 ,并刻划达到上、下界的极
2.
Suppose that G is a connected bipartite graph of order 2n with bipartition X 1, X 2, where |X 1|=|X 2|=n, and δ(G)≥t≥3.
设G是连通偶图,(X1,X2)是其顶点的二分类,|X1|=|X2|=n,δ(G)≥t≥3,且对于Xi中的任意两点u和v,均有|N(u)∪N(v)|≥n-(t-2),i=1,2,文中对t≤6的情况,证明G是点泛圈偶
5) link pair
连接对<偶>
6) panpathical vertex pair
泛连通性点对
1.
We prove that there exists at least a panpathical vertex pair in every connected but not strongly connected tournament and the panpathical vertex pairs can be found in polynomial times.
证明了每个连通的但非强连通的竞赛图中至少存在一个泛连通性点对且该点对可在多项式时间内找到。
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条