1) integrodifferential equation
积极微分方程
2) Integro-differential equation
积-微分方程
1.
We establish the comparison theorem of integro--differential equations on infinite interval, and, by applying the lower-upper solution method, prove the existence of extreme solutions for nonlinear first order integro-differential equations on infinite interval in Banach spaces.
建立了无限区间上的积一微分方程的比较定理,用上下解方法证明了无限区间上的Banach空间积-微分方程的初值问题的解的存在性。
2.
In this paper, the following initial value problem for nonlinear integro-differential equationu (t) =f(t, u(t),T1u(t), T,u(t) ) 1u(t)0=XO Iis considred, wbers \Using the method of upper and lower solutions and the monotone iteratiye technique, we obtain existence results of minimal and maximal solutions.
本文讨论非线性积-微分方程初值问题的极值解的存在性。
3.
In this paper,we consider integro-differential equations kith 0<a<1,where p and q are constant.
本文得到了积-微分方程解的级数表
3) integro-differential equations
积-微分方程
1.
Existence of the solution to singular boundary value problems for second order integro-differential equations;
二阶积-微分方程奇异边值问题解的存在性
2.
Solutions of two-point boundary value problems of integro-differential equations in Banach spaces;
Banach空间积-微分方程两点边值问题的解
3.
On monotone iterative method for the second order two point boundary value problems of integro-differential equations;
二阶积-微分方程两点边值问题的单调迭代法
4) integro-differential equation
积微分方程
1.
In this paper, we give the definition of locally Lipschitz continuous integrated C-semigroups and present a new method to solve an integro-differential equation by approximation of the convergence of integral of a sequence of C-semigroups.
利用逼近的思想给出了一类积微分方程求解的新方法。
5) integral-differential equation
积-微分方程
1.
By using the lower-upper solutions,the monotone iterative technique and a proper iterative process,the existence of global solutions of initial values for integral-differential equations in Banach spaces is obtained under weaker conditions.
利用上下解的单调迭代方法,采用适当的迭代程序,在较弱的条件下,获得了Banach空间积-微分方程初值问题整体解的存在性结果。
6) integro-differential equation method
积-微分方程方法
补充资料:微分方程的差分方程逼近
微分方程的差分方程逼近
approximation of a differential equation by difference equations
微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条