1) integro-differential equation
积分-微分方程
1.
The solutions of boundary value problems for second order integro-differential equations in Banach spaces;
Banach空间中二阶混合型积分-微分方程边值问题的解
2.
In this model,the authors established the integro-differential equation for the expected discounted penalty function at ruin in the case of constant force of interest.
就利息力为常数的情形,给出该模型下破产时刻罚金折现期望满足的积分-微分方程。
3.
Based on the partial differtial equation(PDE),the solution of an integro-differential equation in an infinite interval is expressed in terms of the solution of this kind of equation in a finite interval.
研究了跳扩散框架下采用障碍红利分配策略模型中的自由边界问题,利用偏微分方程理论将有界区间上积分-微分方程的解用无界区间上积分-微分方程的解表示,在此基础上得到了期望累积贴现红利函数及自由边界所满足的方程。
2) integro-differential equations
积分-微分方程
1.
The two-point boundary value problem of integro-differential equations with a one-order derivative in Banach spaces is considered in this paper.
利用R1中两点边值问题的Green函数,讨论了Banach空间中含有一阶导数的二阶积分-微分方程两点边值问题解的存在性。
2.
In this paper,by using the partial order method and a new comparison result,we inves-tigate the unique solution of the initial value problem for nonlinear second order integro-differential equations in Banach spaces.
本文在一般Banach空间中利用半序方法和一个新的比较结果,研究了二阶积分-微分方程初值问题的唯一解。
3.
By a theorem of fixed point and iterative technique for increasing operators in this paper,the existence of solutions and iterative technique of the final value problem for nonlinear integro-differential equations in Banach spaces are obtained.
利用Banach空间中增算子的不动点迭代求法定理,讨论了非线性积分-微分方程终值问题解的存在性及其迭代求法。
3) integral-differential equation
积分-微分方程
1.
Within its integrand,however,an unknown circulation is included so that it becomes an integral-differential equation.
方程中的被积函数包含待求环量的导数,是个积分-微分方程。
2.
The numerical solutions of parabolic integral-differential equations with a weakly singular kernal in the memory term are considered.
考虑一类积分项带弱奇异积分核情形的积分-微分方程的数值解。
4) Integro-differential equation
积-微分方程
1.
We establish the comparison theorem of integro--differential equations on infinite interval, and, by applying the lower-upper solution method, prove the existence of extreme solutions for nonlinear first order integro-differential equations on infinite interval in Banach spaces.
建立了无限区间上的积一微分方程的比较定理,用上下解方法证明了无限区间上的Banach空间积-微分方程的初值问题的解的存在性。
2.
In this paper, the following initial value problem for nonlinear integro-differential equationu (t) =f(t, u(t),T1u(t), T,u(t) ) 1u(t)0=XO Iis considred, wbers \Using the method of upper and lower solutions and the monotone iteratiye technique, we obtain existence results of minimal and maximal solutions.
本文讨论非线性积-微分方程初值问题的极值解的存在性。
3.
In this paper,we consider integro-differential equations kith 0<a<1,where p and q are constant.
本文得到了积-微分方程解的级数表
5) integro-differential equations
积-微分方程
1.
Existence of the solution to singular boundary value problems for second order integro-differential equations;
二阶积-微分方程奇异边值问题解的存在性
2.
Solutions of two-point boundary value problems of integro-differential equations in Banach spaces;
Banach空间积-微分方程两点边值问题的解
3.
On monotone iterative method for the second order two point boundary value problems of integro-differential equations;
二阶积-微分方程两点边值问题的单调迭代法
6) integro-differential equation
积微分方程
1.
In this paper, we give the definition of locally Lipschitz continuous integrated C-semigroups and present a new method to solve an integro-differential equation by approximation of the convergence of integral of a sequence of C-semigroups.
利用逼近的思想给出了一类积微分方程求解的新方法。
补充资料:积分微分方程
积分微分方程
integro-differential equation
积分微分方程【加峡卿~由压翻即位叭闰.柱阅;舰.印。-皿.例卜peH姗~oe邓aBHe皿。e」 在微分和积分两种运算符号下都包含未知函数的一个方程.积分方程和微分方程也是积分微分方程. 线性积分微分方程(U几浓r intef卿~d正rerelltial eqUa-tion).设了是给定的一个变量的函数,令 , L·[Ul三答、;‘(‘)U(‘,(x),M夕【Ul二,瓦q,(x)U‘”(y)是带有[a,b1上充分光滑的系数p万和q,的微分表达式,且设K是正方形汇a,blx【“,b]上充分光滑的一个已知函数.形如 b L、。U〕一“丁K(x,,)M,。U ld,+,(x)(,)的一个方程称为线性积分微分方程;又是一个参数.如果(1)中当夕>x函数K(x,夕)二0,则(1)称为带可变积分限的积分微分方程;它可以写成 ::[。]一、丁、(x,,)、,。。]以,+f(x)(2) 0的形式.对(I)和(2)可以提Ca川ly问题(Cauchyproblem)(求满足U(’)(戊)=e‘(i二o,l,…,l一1)的解,这里。*是给定的数,l是L:【U」的阶数,且:盯a,b』),以及各种边值问题(例如,周期解问题).很多情况下(见[3],[4]),对(1)和(2)的间题能够简化,或者甚至可分别地化成第二类Fredholm积分方程(见Fr司比bn方程(Fredhohn叫Uation))或翎t~方程(VOherra eqUa幻o幻).同时,对积分微分方程很多特殊现象产生了,而这些现象对微分或积分方程是不典型的. 最简单的非线性积分微分方程(non一址℃肚访把孚。-dit免rential闪Uation)有形式 打U(x)一、JF(x,,,U(,),…,U‘“,(,,)d,+f(x)·压缩映射原理(conti刁ctingrr以Pp吨pnnciPle),Sd.u-der法(Schauder nr山闭),以及其他的非线性泛函分析方法,用于研究这种方程. 对积分微分方程,也可以研究解的稳定性,本征函数展开,按小参数的渐近展开等问题.偏积分微分方程和带重积分的积分微分方程在实践中经常遇到.BOltZ盯讯nn方程和KO力MoropoB一凡Uer方程是其中的例子.‘什江J吊锐”诚”万程是有慈义的,例如在人口动力学中(fAZ」).偏积分微分方程,即作为积分和偏微分算子两者的自变量出现的多元函数的方程是有价值的,譬如在连续统力学中(【Al],!A3」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条