1) unit operator
单位算子
2) Unilateral operator weighted shifts
单边算子权移位
3) unilateral operator weighted shift
单侧算子权移位
1.
If {A_k}_(k≥0) be a uniformly bounded sequence of Invertible operators on H, H_n=H,(?)=sum from n=0 to +∞(⊕H_n) the unilateral operator weighted shift S on (?) with the weightedsequence {A_k}_(k≥0) is defined as S(x_0,x_1,x_2,…)=(0, A_0x_0,A_1x_1,…), (x_n)_n∈(?), denoted.
若{A_k}_(k≥0)是H上一致有界的可逆算子序列,设H_n=H,(?)=sum from n=0 to +∞(⊕H_n),(?)上具有算子权序列{A_k}_(k≥0)的单侧算子权移位S定义为S(x_0,x_1,x_2,…)=(0,A_0x_0,A_1x_1,…),(x_n)_n∈(?),记为S~{A_k}_(k≥0)。
4) unit-delay operator
单位延迟算子
5) the unilateral (weighted) backward shift
单边(加权)后移位算子
6) Unilateral weighted shifts
单侧加权移位算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条