1) univalent operator
单叶算子
1.
Under the certain condition,the closure of(u+k)-orbit of the univalent-like operator is characterized and the result that the univalent operator is in the closure of(u+k)-orbit of the univalent-like operator is proved.
在一定条件下,刻画了类单叶算子的(u+k)轨道闭包,并证明了单叶算子包含在类单叶算子的(u+k)轨道闭包中。
2.
A notion referring to the univalent operator was proposed via considering a class of the analytic(Toeplitz) operators.
通过研究一类解析的Toeplitz算子,引出单叶算子的概念,并刻画了它的(U+K)轨道闭包,从而给出这类算子集合的(U+K)不变量。
2) univalent-like operator
类单叶算子
1.
Under the certain condition,the closure of(u+k)-orbit of the univalent-like operator is characterized and the result that the univalent operator is in the closure of(u+k)-orbit of the univalent-like operator is proved.
在一定条件下,刻画了类单叶算子的(u+k)轨道闭包,并证明了单叶算子包含在类单叶算子的(u+k)轨道闭包中。
3) monocotyledons
单子叶类
4) monocotylous
单子叶的
5) monotone operator
单调算子
1.
One generalized variational inequality involving relaxed Lipschitz and relaxed monotone operators;
一类包含松弛Lipschitz算子和松弛单调算子的广义变分不等式
2.
This paper deals with the functional principle corresponding to 3\|D staticmagnetic Robin problem given in [4] by using nonlinear monotone operator theorem.
利用非线性单调算子理论证明了由作者在另一篇论文中给出的三维静磁场Robin问题的变分原
3.
MethodsThe monotone operator theory and the Schauder s fixal point theorem were used.
方法应用了单调算子理论和Schauder不动点定理。
6) partheno-genetic operator
单亲算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条