说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
专业词汇(按中图法分类)
  • 马列主义、毛泽东思想、邓小平理论
  • 哲学、宗教
  • 社会科学总论
  • 政治、法律
  • 军事
  • 经济
  • 文化、科学、教育、体育
  • 语言、文字
  • 文学
  • 艺术
  • 历史、地理
  • 自然科学总论
  • 数理科学和化学
  • 天文学、地球科学
  • 生物科学
  • 医药、卫生
  • 农业科学
  • 工业技术
  • 交通运输
  • 航空、航天
  • 环境科学、安全科学
您的位置:首页 -> 词典 -> 粗制状态
1)  state of rawness
粗制状态
2)  the state of extensive management in agriculture
粗放式经营状态
3)  S-rough state law
S-粗状态规律
1.
The inference and forecast of the system S-rough state law;
系统S-粗状态规律的推理-预测
4)  intergranular state parameter
粗粒间状态参数
1.
The forementioned behaviour was interpreted by the intergranular state parameter, which is.
本文通过对净砂(S)、三种不同粉土含量的粉土质砂(FS1:含10%粉土,FS2:含20%粉土与FS3:含30%粉土)以及粉土(F)进行的一系列三轴固结不排水试验(CU),研究了围压、孔隙比以及粉土含量(FC)对饱和粉土质砂应变软化特性(不稳定性)的影响;引入等效粗粒间孔隙比(e_(ge)),运用临界状态理论以及粗粒间状态参数(ψ_(ge)),分析了粉土质砂的应变软化规律。
5)  preparing processes
制备状态
6)  Replication status
复制状态
补充资料:应力状态和应变状态
      构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
  
  应力状态  如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
  
  
  应力圆  是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
  
  
  应变圆  也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2
  
  广义胡克定律  当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
  
  
  
  
  
  
  
  
  
  
  
  
   τxy=Gγxy
  
  
  
   τyz=Gγyz
  
  
  
   τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
  
  
  
   单向应力状态下的胡克定律则为σ=Eε。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
 
×
Data from Bing and Google