1) Orthogonal wavelet bases with compact support in frequency domain response
频域紧支集小波基
2) wavelets with compact support in frequency domain
频域紧支撑正交小波
3) wavelet compact support set
小波紧支集
4) strict support orthogonal wavelet
紧支集正交小波
1.
Based on the Mallat algorithm of discrete wavelet transform, the decomposition of acceleration process of ground motion due to earthquake is obtained by strict support orthogonal wavelets db6.
基于离散正交小波变换的快速Mallat算法,用紧支集正交小波db6对地震动加速度时程进行了分解,随后将该分解结果用于求解多自由度弹性体系的地震反应。
5) orthogonal compact support wavelet
正交紧支集小波
1.
The relationships between extension of finite length signals and the number of the output data from an orthogonal compact support wavelet filter bank are studied.
研究了有限长信号通过正交紧支集小波滤波器组时 ,信号的延拓与滤波器组输出数据个数的关系 ,给出了在滤波器组中滤波器长度不同的条件下 ,有限长信号的延拓方法及可完全重构的范围 ,证明了滤波器组输出数据的个数等于输入信号长度的条件 。
6) compactly supported wavelets
紧支小波
补充资料:时域测量与频域测量
测量被测对象在不同时间的特性,即把它看成是一个时间的函数f(t)来测量,称为时域测量。例如,对图中a的信号 f(t)可以用示波器显示并测量它的幅度、宽度、上升和下降时间等参数。把信号f(t)输入一个网络,测量出其输出信号f(t),与输入相比较而求得网络的传递函数h(t)。这些都属于时域测量。
对同一个被测对象,也可以测量它在不同频率时的特性,亦即把它看成是一个频率的函数S(ω)来测量,这称为频域测量。例如,对信号f(t)可以用频谱分析仪显示并测量它在不同频率的功率分布谱S(ω),如图b。把这个信号输入一个网络,测量出其输出频谱S′(ω),与输入相比较而求得网络的频率响应G(ω)。这些都属于频域测量。用一个频率可变的正弦(单频)信号作输入,测量出在不同频率时网络输出与输入功率之比,也得到G(ω)。这仍然是频域测量。
时域与频域过程或响应,在数学上彼此是一对相互的傅里叶变换关系
这里*表示卷积。时域测量与频域测量互相之间有唯一的对应关系。在这一个域进行测量,通过换算可求得另一个域的结果。在实际测量中,两种方法各有其适用范围和相应的测量仪器。示波器是时域测量常用的仪器,便于测量信号波形参数、相?还叵岛褪奔涔叵档取?频谱分析仪是频域测量常用的仪器,便于测量频谱、谐波、失真、交调等。
对同一个被测对象,也可以测量它在不同频率时的特性,亦即把它看成是一个频率的函数S(ω)来测量,这称为频域测量。例如,对信号f(t)可以用频谱分析仪显示并测量它在不同频率的功率分布谱S(ω),如图b。把这个信号输入一个网络,测量出其输出频谱S′(ω),与输入相比较而求得网络的频率响应G(ω)。这些都属于频域测量。用一个频率可变的正弦(单频)信号作输入,测量出在不同频率时网络输出与输入功率之比,也得到G(ω)。这仍然是频域测量。
时域与频域过程或响应,在数学上彼此是一对相互的傅里叶变换关系
这里*表示卷积。时域测量与频域测量互相之间有唯一的对应关系。在这一个域进行测量,通过换算可求得另一个域的结果。在实际测量中,两种方法各有其适用范围和相应的测量仪器。示波器是时域测量常用的仪器,便于测量信号波形参数、相?还叵岛褪奔涔叵档取?频谱分析仪是频域测量常用的仪器,便于测量频谱、谐波、失真、交调等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条