1) Matrix translation function
矩阵变换函数
2) matrix function transformation
矩阵函数变换
1.
In non-classical damped linear system a matrix function transformation was introduced to get rid of the damping term which is difficult to solve in the systems.
针对非经典阻尼振动线性系统,为消除非经典阻尼项给求解带来的困难,通过引入矩阵函数变换消除了原系统的阻尼条件项,将非经典阻尼振动微分方程转化为拟时不变经典阻尼方程。
3) matrix function
矩阵函数
1.
An application of matrix function in finding the solution of linear simultaneous equations;
矩阵函数在解线性方程组中的应用
2.
Two computation methods of matrix function;
矩阵函数的两种计算方法
3.
In this paper, the fundamental formula of matrix function is discussed.
分析讨论了矩阵函数的基本公式 ,提出了用矩阵函数的基本公式求解二阶线性电路暂态响应的方法 ,此方法且可推广应用于高阶线性电路暂态响应的求解过程 ,与传统方法相比其优点突出。
5) functional matrix
函数矩阵
1.
In this paper, we obtain necessary and sufficient condition that 2 th functional matrix is changed diagonal functional matrix, and discuss orbit properties on equation d x /d t= diag (a 1(t),a 2(t))x .
本文给出了二阶函数矩阵可化为对角形函数矩阵的充要条件 ,并讨论了相应的非自治系统轨线性态 ,其中解轨线的遍历性是平面自治系统所没有
6) transformation matrix
变换矩阵
1.
This paper applies the array manifold interpolation wideband direction finding algorithm on uniform linear array,and gives other two methods of seeking transformation matrix.
文中把阵列流行内插宽带测向算法应用到均匀线阵上,并给出了求变换矩阵的另外两种方法。
2.
At the same time, the transformation matrix M ct between the camera and the vehicle has been calculated.
建立了摄像机坐标系 ,轮式移动机器人车体坐标系以及目标物体 (世界坐标系 )之间的位姿关系模型 ,着重论述了摄像机与轮式移动机器人车体之间的坐标变化关系 ,并求出了其变换矩阵Mct。
3.
The method generates the resulting transformation matrix.
针对野战战术三维环境原型系统BIT-VBFS的开发过程中所遇到的将模型从右手坐标系移植到左手坐标系的问题,提出了一种在不同三维坐标系之间寻找对应的变换矩阵的一般性方法,这种方法得到的是对于变换的转换矩阵,所以在对模型进行实际的转换时并没有增加计算的复杂度。
补充资料:传递函数矩阵
传递函数矩阵
transfer function matrix
子系统的并联,其输人一输出传递函数矩阵w(:)一Wl(:)+WZ(;),式中Wl(:),WZ(:)分别为子系统(Al,刀,,C:,D,)和(A。,召:,C。,DZ)的输人一输出传递函数矩阵。图(b)示出两个子系统的串联,其输人一输出传递函数矩阵为w(s)~w。(:)w:(:)。图(e)示出由反馈子系统构成的组合系统,其输人一输出传递函数矩阵为w(s)一w,(s)[I+W:(s)W:(s)3一‘或w(s)=〔I+Wl(s)WZ(s)〕一‘Wl(,)。、,,‘、‘_一~、、,_一一_、_一.~,adi白程制杀扰堆皿小简盯,叫且残田一卜(51一A)sI一A}得(sI一A)一‘,其中}sI一A}为(sI一A)矩阵的行列式,adj(sI一A)为(sI一A)矩阵的伴随矩阵。当控制系统维数较高时,这样的方法计算过程太复杂,可用其他更简便的方法。 对许多实际系统而言,D矩阵往往是0矩阵,}sI一A】的根为系统的极点,cadj(sI一A)B中各元素多项式的根为系统的零点。存在零点、极点相消的情况下,传递函数矩阵就不能完全描述系统的运动规律及性能,只能反映系统完全可控且完全可观测部分的情况。chuondt匕。nshu]U之匕en传递函数矩阵(t ransfer functionmatrix) 表示线性定常控制系统输人向量对状态向量、输人向量对输出向量传递关系的矩阵。·用于多输人多输出控制系统的分析研究。 简单系统的传递函数矩阵一控制系统的状态空间表达式如下分~Ax+Buy一Cx+刀“简写为(A、B、c、D){“,式中x为n维状态向量;y为q维输出向量;u为产维输人向量;A为。只,维系统矩阵;B为。xp维输人矩阵;c为qxn维输出矩阵;刀为q火P维前馈矩阵。 假定系统初始状态为0,其拉普拉斯变换后的表达式为X(s)~(sI一A)一王召U(s)Y(s)二「C(51一A)一‘B+D〕U(s)(2)式中(sI一A)一’B称为输人一状态传递函数矩阵;c(汀一A)一’B十D称为输人一输出传递函数矩阵,简称传递函数矩阵,它是一个q丫P维矩阵,它的每一个元素反映了某个输入变量对某个输出变量的传递函数。一个控制系统的传递函数矩阵是一定的,不因坐标变换而变化。 复杂系统的传递函数矩阵实际的控制系统往往由多个子系统组合而成,或并联,或串联,或形成反馈连接,或是它们的组合。组合系统的输人一输出传递函数矩阵可由各子系统的输人一输出传递函数矩阵组合而成。图为基本组合系统的框图。图(a)示出两个┌─────────┐│(决1,BI,CI,D工)│└─────────┘竺竺习(Al,,l,。1,。l)匡一丝}(,、,2,c、Dz) les丝巡┌─────────┐│(AI,日卜C一,D工)│└─────────┘┌─────────┐│(人水日入亡2,0刀 │└─────────┘基本组合系统框图(a)两个子系统的并联;(b)两个子系统的串联;(c)由反馈子系统构成
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条