说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 摄动问题
1)  perturbations problem
摄动问题
1.
This paper discusses perturbations problem with relation to a speed of the balanced development,a proportion of the balanced development and a period of crisis, and obtains some important conclusions with practical economic background.
文中探讨了这一模型的摄动问题与均衡发展速度、均衡发展比例及危机周期的关系,并得出了一些有实际经济背景的重要结论。
2)  singular perturbation problems
奇异摄动问题
1.
some results were obtained on error analysis of linear multistep methods, Runge-kutta methods, Rosenbrock methods and general linear methods applied to singular perturbation problems.
目前已有线性多步法、Runge-Kutta方法、Rosenbrock方法、一般线性方法关于奇异摄动问题的定量误差分析结果。
2.
A two point scheme with high order accuracy on arbitrary mesh is presented for a kind of singular perturbation problems based on the idea of .
根据文[1]的思想对一类奇异摄动问题给出了高精度的任意不等距二点差分格式。
3)  singular perturbation problem
奇异摄动问题
1.
Then,we turn our attention to singular perturbation problems (SPPs),which are a special class of stiff ordinary differential equations(ODEs).
接着,对于一类刚性常微分方程——奇异摄动问题,介绍了它的起源,并且对其数值方法求解作了详细的介绍。
2.
What s more, when applied to the fourth order singular perturbation problem, it is also anisotropic convergent.
本文应用双参数法构造了一个八自由度十二参非C~0非协调板元,分析了其各向异性收敛性与超收敛性,证明了其对四阶椭圆奇异摄动问题的各向异性收敛性,从而显示了双参数有限元新的优越性。
3.
A singular perturbation problem of a hyperbolic-parabolic partial differential equation is discussed.
为讨论一个双曲-抛物奇异摄动问题的渐近展开问题,首先用能量方法建立稳定不等式,然后利用双重迭代法对原问题进行渐近展开,最后用稳定不等式证明了渐近解对原问题解的O(εn)阶逼近式,从而证明了渐近解的一致有效性。
4)  Singularly perturbed problem
奇异摄动问题
5)  singularly perturbed problems
奇异性摄动问题
6)  The perturbed two-body problem
摄动二体问题
补充资料:摄动函数的展开问题
      在天体力学中,所有的分析方法都要对受摄运动方程进行积分,除个别情况外,在积分前,一般必须把摄动函数展开为时间以及所选择变量的显函数,这就是摄动函数的展开问题。这个问题是摄动理论中的基本课题之一。摄动函数展开式的收敛快慢,在一定程度上决定相应的摄动理论的使用效果。
  
  经典的展开方法是将摄动函数展开为幂级数和三角级数的混合级数,它又称泊松级数。以三体问题为例,摄动函数中包含被摄动天体和摄动天体的轨道要素和时间,而时间则隐含在天体的近点角内。在瞬时轨道为椭圆的情况下,摄动函数展开为两个天体的轨道半长径之比α=α/α ′、偏心率е、е′和两个轨道面交角I一半的正弦sin(I/2)的幂级数,以及平近点角和其他轨道要素(或有关辅助量)的三角级数。当α、е和е′接近于1以及I 较大时,展开式收敛得很慢,甚至不收敛。因此,摄动函数的展开问题实际上就是改进展开式的收敛性问题。二十世纪四十年代以后,不少人研究了各种改进方法。研究得最多的是α接近于1的情况。主要采用的方法有:①用复变函数的线性变换使奇点离变量的应用范围更远些,从而改进展开式的收敛性;②分出形式为(1-α2)-s 的因子或有关项(s为正有理数),再讨论其余项的展开,从而回避α接近于1时的困难;③以中间轨道的摄动函数展开式作为基础,在相应的改正项中只出现天体之间距离的正幂次项,因而不存在α接近于1的困难;④找出既适用于α<1,也适用于α>1的更一般的展开式,以便适用于投影相交轨道情况(如海王星和冥王星的轨道)。以上几种方法都处于试用阶段,但已取得很多成果。
  
  对于I较大时产生的困难,主要用两种办法解决:①不展开为sin(I/2)的幂级数,而展开为I的三角级数;②展开为cosI的幂级数。另外,不少人用两个天体的瞬时轨道对某惯性参考面的倾角i和i′来代替I。对于偏心率e和e′较大时产生的困难,虽然有一些解决办法,例如用e=sinφ、e′=sinφ′,把摄动函数展开为φ和φ′的三角级数,但效果仍不好,故这个困难依然存在。正因为如此,对于大偏心率轨道的摄动问题(如一些彗星、月球火箭等),还只能用数值方法进行研究。除上述困难外,当两个天体的瞬时轨道的平均角速度接近通约时,在积分受摄运动方程也会出现小分母的困难,这可用共振理论的方法解决。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条