1) collectively fixed point theorem
集族不动点定理
1.
A collectively fixed point theorem for a family of set-valued mappings defined on a product space of locally generalized convex uniform spaces is first proved.
对一族定义在局部广义凸一致空间的乘积空间上的集值映射,给出了一个集族不动点定理。
3) fixed-point theorem
不动点定理
1.
By using fixed-point theorem in cones and fixed-point index theory,a class of discrete P-Laplacian boundary value problem was discussed and a sufficient condition of existence of one or two positive solutions was obtained.
利用锥上的不动点定理及不动点指标理论对一类离散P-Laplacian边值问题正解的存在性进行了讨论,得到了该问题存在一个及两个正解的充分条件。
2.
This paper presents an algorithm based on fixed-point theorem and Quine.
论文提出了一种基于不动点定理和Quine的建立自修复式程序的算法。
3.
By means of Darbo s fixed-point theorem,an existence result of solution for two-point boundary value problem of nonlinear fractional differential equation is obtained.
讨论了非线性分数阶微分方程的两点边值问题,其中的导数是Caputo型分数阶导数,非线性项是Carathéodory函数,应用Darbo不动点定理,证明其在L(0,1)中存在解。
4) fixed point theorems
不动点定理
1.
Common fixed point theorems for Altman type mappings;
Altman型映射的公共不动点定理
2.
With the help of Maximum principle,Picard existence and uniqueness theorem and LeraySchauder fixed point theorems,the existence and uniqueness of the solution of nonlinear coupled differentio-integral system whose geometrical model is area-preserving curvature flow on the plane are proved.
利用最大值定理、Picard存在惟一性定理和Leray Schauder不动点定理,证明了一个几何模型为平面保面积曲率流的非线性耦合微分-积分方程组的解的存在惟一性。
3.
Using the fixed point theorems of cone mapping,a method is given to decide the existence of positive solution of second order two points boundary value problem with sign change of nonlinearities.
利用上下解方法,构造相应锥映射,运用锥映射不动点定理,给出非线性项变号的二阶两点边值问题正解存在性的判定方法,推广了已有文献中相应的结果。
5) the fixed point theorem
不动点定理
1.
In this paper, an existence and uniqueness theorem of positive solutions to a class of semilinear ellipic equations is proved by using the fixed point theorem in Banach space.
该文主要采用 Banack空间中的不动点定理 ,研究了一类半线性椭圆型方程正解的存在性与唯一性 ,并且获得这类椭圆型方程正解存在的一个必要条件。
2.
An existence of positive solution to the semilinear elliptic equation system is proved by using the fixed point theorem.
以不动点定理为主要工具,证明了一类半线性椭圆型方程组正解的存在性,并通过对非线性项适当的限制,给出了唯一性的证
3.
A class of nonlinear n-order boundary value problems was studied and the existence of non-trivial positive solution was obtained by making use of the fixed point theorem in cone,on the basis of which we have estabished several sufficient conditions for the existence of non-trivial positive solution to the nonlinear n-order boundary value problem and improved the results published in literatures.
利用不动点定理和积分方程研究了一类非线性n-阶边值问题,获得了其非平凡正解存在性的新结果。
6) fixed point
不动点定理
1.
In order to discuss the existence of positive solutions to Singular Boundary Value Problems of a Class of Second Order m-point Sublinear Differential Equations,the author continues the research to solve this type of problem by constructing lower and upper solutions and with the maximal theorem and schauder s fixed point principle.
为了讨论一类Emden-Fowler方程奇异m-点边值问题正解的存在性问题,运用上下解方法、极大值原理和Schauder不动点定理,在次线性条件下,解决了这类奇异边值问题正解的存在性问题,并获得了该类边值问题存在C1[0,1]正解的充分必要条件。
2.
Mnch fixed point theorem.
利用M¨onch不动点定理 ,获得了Banach空间中一类具有奇异性的脉冲微分方程边值问题解的存在性 ,并给出了其在无穷维奇异脉冲微分方程组中的应用 。
3.
Using Brouwer s fixed point theorem,proved that any positive matrix has a positive eigenvalue and any n×n matrix A with the sum of each row entries is constant b has b as a eigenvalue.
利用Brouwer不动点定理证明了Perron-Wielandt定理,即正矩阵必有正特征值及方阵的行(列)元素之和为非零常数b时有特征值b。
补充资料:不动点定理
不动点定理 fixed-point theorem 如果f 是n+1维实心球Bn+1={x∈R n+1|x|≤1}到自身的连续映射(n=1,2,3…),则f 存在一个不动点x∈Bn+1(即满足f(x0)=x0)。此定理是L.E.J.布劳威在1911年证明的。不动点问题实际上就是各种各样的方程(如代数方程、微分方程、积分方程等 )的求解问题 ,在数学上非常重要,也有很多的实际应用。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条