1) van der Waals effect
van der Waals效应
2) Van Der Waals force
Van Der Waals力
1.
Van der Waals force in the dynamical squeezing vacuum;
动力学压缩真空中的Van der Waals力
3) van der Walls vibrations
van der Waals振动
4) Van-der-Waals coupling
Van-der-Waals 耦合
1.
We accept his general suggestions but propose that the colossal Van-der-Waals coupling may also arise from the enhanced polarisability of surrogate molecular clusters due to the polaron gap narrowing effect.
我们接受它的一般建议,而提出非常 Van-der-Waals 耦合同样可以由于极化子间隙紧缩效应由替代分子团簇的增强可极化性引起。
5) modified van der Waal's model
修正van der Waals模型
6) Van der Vusse reaction
Van der Vusse反应
1.
For Van der Vusse reaction, the possibility of integration of reaction and separation process is analyzed for different separation plan and feed conditi.
以Van der Vusse反应为例,在不同分离方案和不同进料条件下分别讨论了反应-分离集成的可能性,结果表明:不同条件下所得到的反应-分离集成结构是不同的,运用导数分析的方法来判断并进行反应-分离集成是简捷、有效的。
补充资料:van der Waals equation
分子式:
CAS号:
性质:实际气体的常用状态方程之一。1mol实际气体的该方程为,式中p、T、Vm、R分别为实际气体的压力、热力学温度、摩尔体积和摩尔气体常数;α、b是范德华常数,可由实验确定其值,对指定种类气体是常数,对不同种类气体具有不同值。其中b称为排除体积(excluded volume),是由于实际气体分子占有体积而使1mol气体分子自由活动的空间由理想气体的值Vm减小到(Vm-b)的修正量。b的值约为1mol气体分子固有体积的4倍。式中称为实际气体的内压力(internal pressure),是因气体分子间具有引力作用而造成的1mol气体对容器壁所施压力相对理想气体之值的减小值。利用临界点条件,可由临界温度、压力值算出α和b。在压力不是非常大的情况下,该方程能较准确地描写实际气体的p、Vm、T间的关系,能指出临界点的存在,并能与低于临界温度时实际气体可以液化等事实相符合,是理论意义与实际意义兼具的状态方程。
CAS号:
性质:实际气体的常用状态方程之一。1mol实际气体的该方程为,式中p、T、Vm、R分别为实际气体的压力、热力学温度、摩尔体积和摩尔气体常数;α、b是范德华常数,可由实验确定其值,对指定种类气体是常数,对不同种类气体具有不同值。其中b称为排除体积(excluded volume),是由于实际气体分子占有体积而使1mol气体分子自由活动的空间由理想气体的值Vm减小到(Vm-b)的修正量。b的值约为1mol气体分子固有体积的4倍。式中称为实际气体的内压力(internal pressure),是因气体分子间具有引力作用而造成的1mol气体对容器壁所施压力相对理想气体之值的减小值。利用临界点条件,可由临界温度、压力值算出α和b。在压力不是非常大的情况下,该方程能较准确地描写实际气体的p、Vm、T间的关系,能指出临界点的存在,并能与低于临界温度时实际气体可以液化等事实相符合,是理论意义与实际意义兼具的状态方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条