1) essential Loose Nash equilibrium point
本质Loose Nash平衡点
2) Loose Nash equilibrium point
Loose Nash平衡点
3) Nash equilibria
Nash平衡点
1.
In this paper, we discuss the existence of solutions to generalized vector Ky Fan minimax principle , and we discuss the existence of Nash equilibria for vector payoff and an implicit vector variational inequality.
讨论了几种推广形式的向量Ky Fan极大极小原理的存在问题,作为应用,还讨论了向量支付映射的对策系统的Nash平衡点的存在性及一类向量隐变分不等式的解的存在性。
2.
In this thesis, we mainly discuss the existence and generic stability of Nash equilibria for n-person non-cooperative games under weaker conditions.
本文主要讨论了较弱条件下的n人非合作对策的Nash平衡点的存在性和通有稳定性。
4) Nash equilibrium
Nash平衡点
1.
Sheme to optimize revenue in networks based on Nash equilibrium;
基于Nash平衡点的网络收益优化策略
2.
In this paper,We use Schauder fixed point theorem to prove the existence theorem of Nash equilibrium.
本文用Schauder不动点定理直接证明Nash平衡点的存在性定理。
3.
In this paper, we introduce the concept of Nash equilibrium for set-valued mappings which includes usual Nash equilibrium and Loose Nash equilibrium as special cases, and we obtain existence theorems of Nash equilibria for set-valued mappings both under compact and non-compact assumptions.
本文引入了集值映射的Nash平衡点的概念,它以通常的Nash平衡点及Loose Nash平衡点为特例,并在紧和非紧的假设下,得到集值映射的Nash平衡点的存在定理,其中在非紧的情况下使用escaping序列的定义。
5) Nash equilibrium point
Nash平衡点
1.
Q -learning from original single-agent framework is extended to non-cooperative multi-agent framework, and the theoretic framework of multi-agent learning is proposed under general-sum stochastic games with Nash equilibrium point as learning objective.
将 Q- learning从单智能体框架上扩展到非合作的多智能体框架上 ,建立了在一般和随机对策框架下的多智能体理论框架和学习算法 ,提出了以 Nash平衡点作为学习目标 。
2.
From this theorem, it is easy to derive existence theorems of essential components ofthe set of fixed points and Nash equilibrium points.
应用这个定理,容易地导出了不动点集和 Nash平衡点集本质连通区的存在性定理。
3.
The paper defines ideal-Nash equilibrium point of the vector game on the metric space.
在度量空间下,定义向量对策理想Nash平衡点。
6) Nash equilibrium points
Nash平衡点
1.
Based on the results which were proved by Horvath in topological ordered spaces,using the fixed point theorem in topological semilattices,we prove the existence of Nash equilibrium points for n-person non-cooperative generic game in topological ordered spaces.
基于Horvath关于序拓扑空间中所给出的拓扑半格的框架结构 ,利用拓扑半格中的不动点定理 ,给出了序拓扑空间中的n -非合作广义对策Nash平衡点的存在性定理。
2.
From this unified theorem, it is easy to derive the Hadamard well-posed theorems for Ky Fan s points, Nash equilibrium points, and so on.
应用这个定理,可以容易地推出KyFan点、Nash平衡点等的Hadamard良定性。
3.
In this thesis, we focus on discussing the stability of solutions of non-cooperative games with infinitely many pure strategies, including the generic stability of solutions of infinitely many pure strategies and the existence of the essential components of the sets of Nash equilibrium points of infinite games.
主要包括无限对策Nash平衡点集的通有稳定性以及无限对策Nash平衡点集本质连通区的存在性。
补充资料:loose flange
分子式:
CAS号:
性质:又称自由法兰。不直接固定在设备或管道上,只是松套在设备或管道端部上的一种法兰。按设备或管道端部的结构可分为翻边活套法兰、突缘活套法兰和焊环活套法兰。活套法兰优点:(1)形状简单,制造容易;(2)对设备或管道不产生附加弯曲应力;(3)当设备或管道用贵重金属制造时,可以采用与设备或管道不同种类的普通钢材,从而节省贵重金属;(4)便于装配。缺点是法兰厚度较厚。适用于铝、铜等有色金属、不锈钢制的设备、管道及某些高压设备的连接(图暂缺)。
CAS号:
性质:又称自由法兰。不直接固定在设备或管道上,只是松套在设备或管道端部上的一种法兰。按设备或管道端部的结构可分为翻边活套法兰、突缘活套法兰和焊环活套法兰。活套法兰优点:(1)形状简单,制造容易;(2)对设备或管道不产生附加弯曲应力;(3)当设备或管道用贵重金属制造时,可以采用与设备或管道不同种类的普通钢材,从而节省贵重金属;(4)便于装配。缺点是法兰厚度较厚。适用于铝、铜等有色金属、不锈钢制的设备、管道及某些高压设备的连接(图暂缺)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条