说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 常数摸算法
1)  constant modulus algorithjm
常数摸算法
2)  Simulative models
摸拟算法
3)  constant modulus algorithm
常数模算法
1.
At present,constant modulus algorithm (CMA) is widely used,but it has disadvanta- ges that the convergence speed is slow and the residual error is large.
目前,常数模算法(constant modulus algorithm,CMA)应用非常广泛,但它存在收敛速度慢,剩余误差大的缺点。
2.
Constant modulus algorithm is a most popular algorithm and is widely used for blind equalization of non-constant envelope signals and constant envelope signals.
常数模算法是一种最为常用的盲均衡算法,普遍应用于恒包络信号和非恒包络信号的均衡,但存在收敛速度慢和剩余误差大的缺点。
3.
To overcome the disadvantages of slow convergent rate and large residual mean square error (MSE) of constant modulus algorithm (CMA) and least mean kurtosis CMA, a square kurtosis cost function is defined as a kurtosis factor of error signals and its performance is analyzed, a least square kurtosis CMA for updating weight vectors of blind equalizer is proposed.
结果表明 :该算法在收敛速度 ,收敛后的均方误差及码间干扰等方面的性能优于常数模算法与最小平均峭度恒模算法。
4)  CMA
常数模算法
1.
In particular, the Constant Modulus Algorithm (CMA) has become a favorite of practitioners.
常数模算法(CMA)是实际中应用最广的一种盲均衡算法。
2.
Based on the constant modular algorithm (CMA), a new type of blind equalizer wit h filtering in discrete cosine transformation (DCT) domain is proposed for the amplitude- and phase-modulated digital communication systems.
在常数模算法 (CMA)基础上 ,提出一种适合于多电平调幅、调相数字通信系统的基于离散余弦变换(DCT)域滤波的新型CMA盲均衡器 。
3.
The problem was tackled with an evolutionary programming strategy, in which the order, as well as the taps of the equalizer were evolved simultaneously with the objective function of constant modulus algorithm (CMA) adopted a.
利用模拟浅海水声信道数据进行的仿真实验结果表明:本算法可有效避免常数模算法在低估阶数时造成的性能下降,适用于未知阶数情况下的信道盲均衡。
5)  constant modulus algorithm (CMA)
常数模算法(CMA)
6)  Constant-Modulus Algorithm(CMA)
常系数算法(CMA)
补充资料:BP算法
分子式:
CAS号:

性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条