1) Faddeev-Senjanovic path integral
F-S路径积分量子化
2) path-integral quantization
路径积分量子化
3) Quantum path integral algorithm
量子路径积分算法
1.
Quantum path integral algorithm and its application in magnetotelluric inversion;
量子路径积分算法及其在大地电磁反演中的应用
4) path integrals
路径积分
1.
Using the canonical transformation and the method of path integrals, the quantum wavefunction of the time-dependent RLC circuit after quantization is solved, and the quantum fluctuations of the charge and current are investigated.
应用正则化变换结合路径积分方法,求解了电感、电阻、电容随时间变化情况下的有源含时RLC回路的量子化波函数,并进一步研究了电路中电荷、电流的量子起伏。
2.
The mathematical structure and physical sense of Feynman s path integrals have been redefined,by using the theory of stochastic processes.
用随机过程的理论,重新解释了Feynman路径积分的数学结构与物理意义,而且改进了Feynman对“一个自由粒子的精确解的计算。
3.
Using the canonical transformation and the method of path integrals,the exact wavefunction of the time dependent damped harmonic oscillator is derived.
对与速度成正比和与速度平方成正比的阻尼变频谐振子 ,通过正则变换 ,采用路径积分方法 ,得出了阻尼变频谐振子的严格波函
5) path integral
路径积分
1.
Solution of a particle s motion in a one-dimensional infinite square potential well using path integral;
一维无限深势阱中粒子运动的路径积分解法
2.
Introduction of Feynman s path integral theory into engineering physics;
在工科物理中引入费曼路径积分理论
3.
A real time path integral approach is developed in order to work out a correct solution to a problem for the smaller result of the fusion probability of heavy nuclei based on the classical diffusion model at sub-barrier energies.
针对近垒能量下经典涨落耗散模型预期的重核熔合几率比实验结果偏小的问题,发展了一种实时间路径积分方法并用于研究重核熔合激发函数,给出了包含量子涨落效应的解析表达式。
6) path integration
路径积分
1.
Solutions of path integration for nonlinear dynamical system under stochastic parametric and external excitations;
随机参激和外激联合作用下非线性动力系统的路径积分解
2.
The main purpose of this paper is to extend the numerical path integration based on Gauss-Legendre formula and study its applications in complex nonlinear stochastic dynamical systems.
本文推广了基于Gauss-Legendre公式的路径积分法,将其应用于几类典型非线性随机动力学系统的分析。
3.
The probability density function of the model can be captured by using path integration.
基于Goodwin与Puu的经济周期模型,得到了一个推广的非线性动力学经济周期模型,利用路径积分法计算了系统转移概率密度,通过对不同参数条件下概率密度函数形状的变化分析,结合lyapunov指数图,得出了系统发生分岔和混沌的参数域。
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条