1) EOF and REOF
经验正交展开
2) REOF
旋转经验正交展开
1.
Using the rotated empirical orthogonal function(REOF) analysis of the averaged June to July rainfall field, the Meiyu amount and the Meiyu onset data(MOD) during the years from 1957 to 2003, the Changjiang-Huaihe Valley is divided objectively into three subregions, namely, the center(CEN), the southeast(SE) and the northwest(NW).
对江淮地区63站1957—2003年6—7月平均的月降水、梅雨期降水量和入梅期进行旋转经验正交展开,将江淮梅雨区分为中心区、东南区和西北区。
2.
Using the rotated empirical orthogonal function (REOF) method,the normalized rainfall field during the May to July period in the Jianghuai Valley is divided objectively into the north and south regions.
采用旋转经验正交展开(REOF)方法,对我国江淮地区50a5—7月降水标准化距平场进行客观分区,并分析了南北两区5—7月降水异常的长期变化趋势及其周期的变化。
3) rotated empirical orthogonal function
旋转经验正交展开
1.
Using the temperature data at 52 observational stations from 1961 to 2000,the Xinjiang spring temperature field is divided objectively into 3 regions by rotated empirical orthogonal function(REOF)method.
利用新疆52个测站1961~2000年3~5月逐日平均气温资料,采用旋转经验正交展开(REOF)方法对新疆春季气温场进行客观分区,分析了各区域春季气温的不同时间尺度变化趋势。
2.
Using the June and July maximum temperature data at 64 observational stations from 1961 to 2001,the Changjiang-Huaihe valley s maximum temperature field in the Mei-yu period is divided objectively into 3 subdivisions by using the rotated empirical orthogonal function(REOF) method.
利用江淮地区64个测站1961—2001年6—7月最高气温资料,采用旋转经验正交展开(REOF)方法对江淮地区梅雨期最高气温场进行客观分区,并分析了各区域最高气温的长期演变趋势。
3.
By using the rotated empirical orthogonal function (REOF) method, the Guangdong extreme high temperature field was divided objectively into 2 subdivisions and the regional variation of the extreme temperature was anal.
利用广东省76个气象站1962~2004年的逐日最高气温资料,对近40多年来极端最高气温的时空分布特点进行了分析,采用旋转经验正交展开(REOF)方法对广东省极端最高气温场进行客观分区,并采用Mann-Kendall检验和小波分析等方法,研究了极端最高气温的突变和低频振荡特征。
4) empirical orthogonal function
经验正交函数展开
1.
Application of empirical orthogonal function in the studying of flood period precipitation types of Hunan;
经验正交函数展开在湖南省汛期降水分型中的应用
5) REOF(Rotated Empirical Orthogonal Function)
旋转经验正交函数(REOF)展开
6) orthogonal expansion
正交展开
1.
A Ritz dynamic condensation algorithm of orthogonal expansion analysis for stochastic structures;
随机结构正交展开分析的Ritz动力聚缩法
2.
Utilizing the basic principle of the Karhunen-Loeve decomposition for stochastic processes,the orthogonal expansion of the pseudo-wind displacement was carried out and a series expression of the wind velocity fluctuations can be obtained accordingly.
利用Karhunen-Loeve分解的基本原理,对虚拟脉动风位移随机过程进行正交展开,进而获得脉动风速随机过程的正交展开表达式。
3.
Considering the randomness of solid propellant Poisson s ratio,viscoelastic spectral stochastic finite element formulations were derived from the incompressible or nearly incompressible viscoelastic incremental finite element method and orthogonal expansion theory.
基于不可压或近似不可压粘弹性增量有限元方法和正交展开理论,考虑固体推进剂泊松比的随机性,推导了粘弹性谱随机有限元列式,最后对弹性约束的圆柱形中孔药柱进行了随机分析。
补充资料:Cornish-Fisher展开
Cornish-Fisher展开
Cornish - Fisher expansion
C仪nish一Fi劝er展开!C.mi劝一Fisher exl倒圈I佣;】心甲-“。tua一中”.ePa Pa300欲二e」 一个(接近标准正态)分布的分位数用标准正态分布的相应分位数按一小参数的幂的渐近展开.它曾由E.A.Cornish和R .A.曰sher(【l〕)加以研究.如果F恤,门是依赖于参数t的分布函数,小(劝是具有参数(01)的标准正态分布函数,且当t,O时F(x,t)一中(劝,那么,在对川x,t)施加某些假定下,函数义=F‘I。(:).t](F一‘为石的反函数)的cornish一Fishe:展开有如下形式: ”刁~{ 、一、芝狱:)t‘()(,”’),‘1、 1万l其中S(约是:的多项式.类似地,可以定义函数:一中’〔F伙,t)](。’为巾的反函数)依t的幂的comish-Fisher展开: /:艺e(二丫十()(l”).(2) J{其中Q(川是弋的多项式.公式(2)是由展开。一’为关f点巾(劝的Tayl伽级数,再用Ed罗worth展开式而得到的,公式(l)则是(2)的反演 如果X是有分布函数F行,匀的随机变量,则变量Z二Z困二小’{F(X,日l有标准正态分布,且从(扮式可推出,当t,O时,中扛)逼近变量 _”王: z二、十艺口(x、“ r专的分布函数,优于它逼近F(x、。).如果X有零期望与单位方差,则展开式(l)的头几项有如下形式 、二:一l下!h!忙)]一}y:h:(:)+才h,仁月平一其中;1二、:心一2,:2一、4/、;.、为X的r阶半不变量,”l阁一含HZ。),“2阁一女11:侧,“。阁一六·[2H,今)十HI(朔,而月:仓)是1女rmite多项式,它们由如下关系定义_ 叫:)H;{:)一、一叮兰些土(叫:)二一如:)) 山厂有关服从Pearson分布族极限律的随机变量的展开,可见{3}亦见随机变量变换(raTzdom varlables,trans-follnations of).[补注1关于利用Ed罗worth展开(亦见砚gewo曲级数(Ed罗做,rth series))获得否2)的方法,亦见IAI].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条