1) quantum polynomial algebra
量子多项式代数
1.
The algebra AQ is called a quantum polynomial algebra.
代数AQ叫做量子多项式代数。
2) polynomial Lie subalgebras
多项式李子代数
1.
The authors define polynomial Lie subalgebras in the infinite matrix Lie algebra, and discuss some main properties of this kind of subalgebras and its construction.
在无限矩阵李代数中定义了多项式李子代数,研究了这类李代数的主要性质和它的结构,并在一定条件下证明了此类李代数是单李代数。
4) algebraic polynomial
代数多项式
1.
Let pn(x) be the space of algebraic polynomials with degree at most n.
设Pn(x)为[0,∞)上次数不超过n的代数多项式,则有若pn(x)同时又是奇函数或偶函数,则
2.
In this paper, the necessary and sufficient condition of n-order algebraic polynomial with m(mn) different roots is given by means of the trace of square matrix and the ordered main subdeterminant.
本文利用方阵的迹及顺序主子式 ,给出了 n次代数多项式有 m( m n)个不同根的充要条件 。
5) polynomial angular momentum algebra
多项式角动量代数
1.
Algebraic representations of polynomial angular momentum algebra and Its realizations;
多项式角动量代数的代数表示及实现
6) orthogonal algebraic polynomial
正交代数多项式
补充资料:群和代数中的多项式与指数增长
群和代数中的多项式与指数增长
olynomial and exponential growth in groups and algebras
群和代数中的多项式与指数增长〔脚句加m闭田日既卯-渊心ai gr叫曲勿孚伏明出日吨曲拍s]【补注】设S‘={g,,…,g,}是有限生成群G的一组生成元.考虑集合S二{g,,…,g。,g厂’,…,gJ’}.设别”)是G中所有可以用S写成长度簇n的字的元素的集合.令九(n)二#S(时,即S(时中元素的个数.函数.f。(n)称为G(关于给定生成元)的增长函数(growtll ful〕c石on).对于代数,也可给出类似的定义,见下文.代数和群的增长函数(gtOWth加nctions foral罗bn‘and 911〕uPs)的主旨在于研究如/G(哟这样函数的增长阶数及将此阶数与G的群论性质联系起来. 考虑一个非负函数f:N~R,对一切n有f(n))0.设f,g是上述的“增长函数”.如果存在c>O,m任N二{1,2,…},使得对一切n〔N有f(n)(cg(nm),则称f比g增长小,记成f<9.两个增长函数.f,g满足f
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条