1) Hamonic Trap
谐振子势阱
2) harmonic trap
谐振势阱
1.
A solution to the ground and single vortex states of Bose-condensed gas in an axially symmetric harmonic trap;
轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解
2.
Solution of the ground state wave function of Bose-condensed gas in a harmonic trap based on the Gross-Pitaevskii function;
基于Gross-Pitaevskii能量泛函求解谐振势阱中玻色凝聚气体基态波函数
3.
This paper studied a one-dimensional nonlinear Schrodinger equation and described a Bose-Einstein condensation with G-P function and variation in a three-dimensional axisymmetrical harmonic trap and a one-dimensional optical lattice.
对捕陷在三维轴对称谐振势阱叠加一维光晶格的组合势中的玻色凝聚气体,基于平均场G ross-P itae-vsk ii方程理论,并运用G-P能量泛函和变分方法,得出了非线性薛定谔方程的一维形式,运用数值计算的方法,研究了组合势中子凝聚体的粒子数分布与光晶格深度之间的关系,同时分析了磁势阱对子凝聚体粒子数分布的影响。
3) quasi two dimensional harmonic trap
准二维谐振势阱
1.
The thermodynamic properties of the interacting finite size Bose gas caught in a quasi two dimensional harmonic trap are investigated.
研究了准二维谐振势阱中粒子数有限的非理想玻色气体的热力学性质 。
4) harmonic oscillator potential
谐振子势
1.
In this paper,the approximate calculation approach of the Franck-Condon overlaps integrals in the electronic vibronic spectra of polyatomic molecule is investigated with the second-order perturbation theory and the harmonic oscillator potential.
本文利用非简并态的二级微扰理论,研究了谐振子势下多原子分子电子光谱中Franck-Condon重叠积分的计算方法,得到了单振动模Franck-Condon重叠积分的二级近似下的解析表达式,该表达式计算过程简单,并与精确计算结果进行了比较,表明近似结果在较大的振动量子数范围内具有很高的准确度。
5) harmonic potential
谐振子势
1.
According to the analysis of wave function, we can find that harmonic potential is a good model to describe quantum dots.
根据对波函数的分析发现 ,谐振子势是描述量子点的一个较好的势模型。
2.
potential,which is the surperposition potential of the Corlomb potential and the harmonic potential in three dimensions, and discuss the degeneracy of its energy livil.
势即库仑势和三维谐振子势的迭加势的Schrodinger方程的解析解,并讨论了其能级简并度。
3.
potential, which is the superposition potential of the Coulomb potential, the harmonic potentialin three dimensions and the linear potential, and points out the characteristics of the potential and its solutions.
势(即库仑势、三维谐振子势和线性势的叠加势)的Schr(?)dinger方程的解析解,并讨论了C。
6) non-harmonic trap
非谐势阱
1.
Numerical solution of the bose-einstein condensation in three-dimensional non-harmonic trap;
三维非谐势阱中玻色-爱因斯坦凝聚的数值计算
2.
Furthermore,comparisons between harmonic and non-harmonic traps are also made.
从G-P平均势场理论出发,探讨了玻色-爱因斯坦凝聚(BEC)的G-P方程的一维形式,用数值计算方法研究了非谐势阱中非理想玻色凝聚气体的基态和第一激发态解。
3.
A two-dimensional Gross-Pitaevskii equation describing Bose-Einstein condensation in an axial symmetry non-harmonic trap is solved.
通过能量泛函的方法得到描述囚禁在非谐势阱中玻色-爱因斯坦凝聚体的二维G-P方程数值解,讨论原子间相互作用和非谐振势能项对玻色-爱因斯坦凝聚体的分布、能量和化学势的影响。
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条