1) anharmonic trapping potential
非简谐势阱
2) non-harmonic trap
非谐势阱
1.
Numerical solution of the bose-einstein condensation in three-dimensional non-harmonic trap;
三维非谐势阱中玻色-爱因斯坦凝聚的数值计算
2.
Furthermore,comparisons between harmonic and non-harmonic traps are also made.
从G-P平均势场理论出发,探讨了玻色-爱因斯坦凝聚(BEC)的G-P方程的一维形式,用数值计算方法研究了非谐势阱中非理想玻色凝聚气体的基态和第一激发态解。
3.
A two-dimensional Gross-Pitaevskii equation describing Bose-Einstein condensation in an axial symmetry non-harmonic trap is solved.
通过能量泛函的方法得到描述囚禁在非谐势阱中玻色-爱因斯坦凝聚体的二维G-P方程数值解,讨论原子间相互作用和非谐振势能项对玻色-爱因斯坦凝聚体的分布、能量和化学势的影响。
3) External harmonic potential
简谐外势阱
4) anharmonicy
非简谐振动势
5) harmonic trap
谐振势阱
1.
A solution to the ground and single vortex states of Bose-condensed gas in an axially symmetric harmonic trap;
轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解
2.
Solution of the ground state wave function of Bose-condensed gas in a harmonic trap based on the Gross-Pitaevskii function;
基于Gross-Pitaevskii能量泛函求解谐振势阱中玻色凝聚气体基态波函数
3.
This paper studied a one-dimensional nonlinear Schrodinger equation and described a Bose-Einstein condensation with G-P function and variation in a three-dimensional axisymmetrical harmonic trap and a one-dimensional optical lattice.
对捕陷在三维轴对称谐振势阱叠加一维光晶格的组合势中的玻色凝聚气体,基于平均场G ross-P itae-vsk ii方程理论,并运用G-P能量泛函和变分方法,得出了非线性薛定谔方程的一维形式,运用数值计算的方法,研究了组合势中子凝聚体的粒子数分布与光晶格深度之间的关系,同时分析了磁势阱对子凝聚体粒子数分布的影响。
6) Hamonic Trap
谐振子势阱
补充资料:多声子过程(见非简谐效应)
多声子过程(见非简谐效应)
multiphonon process
多声子过程multiphonon proeess见非简谐效应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条