1) Chebysheve optimal consistent approximation
切比雪夫最佳一致逼近
2) Chebyshev approximation
切比雪夫逼近
1.
Through Chebyshev approximation in Banach space,the coefficients can be obtained between the equations.
提出一种基于像素邻域的切比雪夫逼近的方法实现运动检测。
2.
And then the coefficients of the Chebyshev approximation between the regions.
提出一种基于像素邻域的切比雪夫逼近构造背景的方法,通过构造视频图像序列在Banach空间的线性包,该线性包与图像序列中任何一幅图片构成不相容线性方程组,通过切比雪夫逼近,求出最佳逼近系数。
3.
Chebyshev approximation theory was applied to the scattering analysis of arbitrary shaped perfect electric conductors over a wide frequency band.
在目标宽带电磁散射特性分析中引入切比雪夫逼近理论,并将离散小波变换技术应用于矩量法,通过快速求解给定频带内的切比雪夫节点和节点处目标的表面电流分布,获得了频带内任意频率点的电流分布,从而实现了目标宽带雷达散射截面的快速计算。
3) Chebyshev approach
切比雪夫(Chebyshev)逼近
4) Best uniform approximation
最佳一致逼近
1.
An equivalent characterization of Haar condition is given in this paper,which guarantees the existence and uniqueness of best uniform approximation.
给出了保证最佳一致逼近元唯一存在的哈尔条件的等价定义。
2.
In this paper,interval generalized Ball curves of Wang-Said type(WSGB) is proposed,it can serve as an effective tool for error control and product testing,three methods are investigated for degree reduction of WSGB,namely,perturbation,best uniform approximation method and constrained best uniform approximation method obtained by Chebyshev polynomial.
定义了区间Wang-Said型广义Ball曲线(WSGB曲线),它可作为误差控制和产品检验的有效工具;采用3种方法讨论了其降阶逼近问题,即扰动法、利用Chebyshev多项式导出的最佳一致逼近算法和插值端点的最佳一致逼近方法;给出了各种处理方法的显式误差表示。
5) best consistent approximation
最佳一致逼近法
1.
This article,on the basis of in introducing the Chebyshev approaches theorem and Chebyshev multinomial foundation,has in detail discussed designing the FIR filter using the Chebyshev best consistent approximation,and the error function extreme value characteristics in the process.
在介绍切比雪夫一致逼近定理和切比雪夫多项式的基础上,讨论了利用切比雪夫最佳一致逼近法设计FIR滤波器,并对设计过程中误差函数的极值特性进行了讨论。
6) optimal uniform approximation
最佳一致逼近
1.
Two different methods(linear programming and optimal uniform approximation) were proposed to solve the problem of bounding interval rational curves with lower degree interval rational curves and an example is provided to demonstrate the algorithms.
针对用低阶区间有理曲线来界定高阶区间有理曲线的问题,提出了线性规划和最佳一致逼近两种不同的解决方法,并以实例验证,结果表明最佳一致逼近方法比线性规划方法有更佳的逼近效果并能提供更紧的界。
2.
Two different methods--Linear Programming and Optimal Uniform Approximation are proposed to solve this problem and provide a.
论文讨论了用低阶的区间Bzier曲面来界定高阶的区间Bzier曲面的问题 ,提出了两种不同的解决方法———线性规划及最佳一致逼近 ,最后提供的实例结果表明线性规划方法能得到一个界 ,而最佳一致逼近算法提供了好的逼近效
补充资料:切比雪夫逼近
切比雪夫逼近
Chebyshev approximation
(〕一ebixuefu bl』in切比雪夫逼近(Chebyshev approximation)也称最佳一致逼近(参见数值通近)。 令度量P二co,且H二氏为次数不大于n的多项式函数集合。设f任C【a,bj,若尸〔凡满足E,(f)三infQe气f一Q则称尸为f的次数不大于n}}co=}}f一尸}}co的切比雪夫逼近多项式函数,称E,(f)为从对给定函数f的最小偏差。且有EO(f))El(f))…,limE,(f)=0事实上,这样的多项式P是存在且唯一的。 切比雪夫定理:Hn中的多项式函数尸成为C[a,司中给定函数f的切比雪夫逼近多项式函数的充要条件是在[a,司上存在一组分点(称为偏差点组或交错点组) a镇xl
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条