1) nearest neighbor–K means clustering RBF algorithm
最近邻-k均值聚类RBF算法
2) K-Means clustering algorithm
K-均值聚类算法
1.
The learning of this method is divided into two processes,state space learning using K-means clustering algorithm for adaptive discretization of continuous states and policy learning using Sarsa algorithm for finding optimal policy.
该方法的学习过程分为两部分:对连续状态空间进行自适应离散化的状态空间学习,使用K-均值聚类算法;寻找最优策略的策略学习,使用替代合适迹Sarsa学习算法。
3) K-means clustering
K均值聚类算法
1.
Application of the improved K-means clustering algorithm in support vector machine;
改进的K均值聚类算法在支持矢量机中的应用
2.
According to the characters of the images, the algorithm separated image into several regions by K-means clustering algorithm, and each region is equalized respectively within their gray levels.
该算法基于图像的特点,利用K均值聚类算法将图像分成几个灰度区间,然后再分别进行均衡化。
5) k-means clustering algorithm
K均值聚类算法
1.
Second, we study the structure of RBF neural networks and mathematical models, and initial create RBF neural network by using k-means clustering algorithm.
接着研究RBF神经网络的结构及数学模型,以K均值聚类算法确定RBF网络隐含层节点的中心、隐含层节点的宽度及输出权值等参数,初步建立RBF网络模型。
6) nearest neighbor clustering algorithm
最近邻聚类算法
1.
Forecasting models are established by using radial basis function(RBF) neural network based on nearest neighbor clustering algorithm(NNCA) and autoregressive integrated moving average(ARIMA).
根据基于最近邻聚类算法(NNCA)的径向基(RBF)神经网络和自回归求和滑动平均(AR IMA)两种方法,建立了各自的单项预测子模型,并利用RBF神经网络对两个单项预测子模型结果进行组合预测,得到最终的预测值。
2.
By analyzing nearest neighbor clustering algorithm, a new nearest neighbor clustering algorithm is proposed.
在分析现有最近邻聚类算法所存在问题的基础上,提出了一种先利用均值规格化的思想来确定算法的初始半径,然后根据启发式规则修改聚类半径的新的最近邻聚类算法。
3.
The new algorithm brings in the Nearest Neighbor Clustering Algorithm to initialize the number and center of clustering.
该算法引入了最近邻聚类算法来初始化FCM算法的聚类数和聚类中心。
补充资料:1,3-丁二烯低聚的均聚物
CAS:68441-52-1
中文名称:1,3-丁二烯低聚的均聚物
英文名称:1,3-Butadiene, homopolymer, oligomeric
中文名称:1,3-丁二烯低聚的均聚物
英文名称:1,3-Butadiene, homopolymer, oligomeric
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条